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Chapter1

Introduction

This document is a tutorial for the HARP software program, which is a member of the
Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for
reliability/availability prediction (refs. 1 and 2). (See vol. 1 of this TP.)

HiRel offers a toolbox of integrated' reliability/availability programs that can be used to
customize the user’s application in a workstation or nonworkstation environment. HiRel consists
of interactive graphical input/output programs and four reliability /availability modeling engines
that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant
system architectures and is also applicable to electronic systems in general. Three of the HiRel
programs were developed by researchers at Duke University and at NASA Langley Research
Center.

The tool system was designed to be compatible with most computing platforms and operating
systems, and some programs have been beta tested within the aerospace community for over
8 years. Many examples of the system’s use have been reported in the literature and at the
HARP Workshop conducted at Duke University, July 10-11, 1990.

The wide range of applications of interest has caused HiRel to evolve into a family of
independent programs that communicate with each other through files that each program
generates. In this sense, HiRel offers a toolbox of integrated programs that can be executed
to customize the user’s application. Figure 1 shows the HiRel tool system. The core of this
capability consists of the reliability /availability modeling engines, which are collectively called
the Hybrid Automated Reliability Predictor (HARP).

The modeling engines are comprised of four self-contained executable software components:
the original HARP program (described in vols. 1 and 2 of this TP), the Monte Carlo integrated
HARP (MCI-HARP) (ref. 3), Phased Mission HARP (PM-HARP) (ref. 4), and X Window
System HARP (XHARP) (ref. 5). In conjunction with the engine suite, are two input/output
interactive graphical user-interface programs that provide a workstation environment for HiRel.
These programs are called the Graphics Oriented (GO) program (described in vol. 3) and the
HARP Output (HARPO) program (described in vol. 4). The base components of HiRel (GO,
HARP, MCI-HARP, and HARPO) are available through NASA’s software distribution facility,
COSMIC.? or from the developers at Duke University.* The XHARP engine! is available from
the university where it was developed. PM-HARP can be obtained from The Boeing Commercial
Airplane Group.

A number of examples are presented in this tutorial beginning with simple models and
progressing to more complex ones to illustrate the HARP capability and to present more detail on
the HARP modeling process. This tutorial only demonstrates the textual input Joutput HARP
format. The developers were successful in retaining an identical textual input /output and file

! Integrated denotes the ability of HiRel software programs to communicate with each other in a common ASCII file
format. These files are discussed in volume 1 of this Technical Paper.

2 COSMIC, The University of Georgia, 382 East Broad St., Athens, GA 30602.

3 Duke University, Dept. of Electrical Eng., Durham, NC, 27706 (Kishor S. Trivedi).
4 Clemson University, Dept. of Computer Science, Clemson, SC 29734 (Robert Geist).
5 The Boeing Commercial Airplane Group, Seattle, WA 98124 (Tilak C. Sharma).



Figure 1. HiRel: GO, HARPO, and suite of reliability engines.

structure for all versions of HARP running on different computing platforms. This convenience
was accomplished by implementing textual HARP in ANSI standard Fortran 77.

Graphical input/output capabilities are presented in volumes 3 and 4 of this Technical Paper.
The graphical user interfaces (GUI), GO and HARPO, use the ANSI standard Graphical Kernel
System (GKS) software to facilitate portability across several graphical display devices. Unlike
the success achieved with textual HARP, the GUI’s do not have identical appearances on the
screens of different display devices associated with their different computing platforms. The
difference in appearance is fortunately minimal and was dictated as such by the GKS installed
on a particular comy uting platform (ref. 2).

Although some modeling concepts are explained in this document to illustrate the modeling
process, the bulk of the theoretical concepts are presented in volume 1 of this Technical Paper and
in several research papers cited in the reference section. The most comprehensive compilation
of HiRel papers can be found in the proceedings of the HARP Workshop.

Combinatorial fault occurrence/repair models (FORM’s) are initially presented in this
volume. The single fault/error handling models (FEHM’s) are presented next and are followed
by the HARP multifault/error handling models applied to the near-coincident fault application.
Appendix A provides file listings of worked examples from this tutorial, and appendix B
provides additional examples with particular emphasis on the dynamic fault tree gates. Sequence
dependency FORM’s are also presented in appendix B.

Important concepts necessary to use HARP properly are presented in volume 1 of this
Technical Paper, which should be read before any serious applications are undertaken with this
capability. HiRel includes a number of software programs that are described in other volumes of
this Technical Paper that may facilitate the user’s productivity in using the HARP capability.
Volumes 3 and 4 present the GO and the HARPO software programs, respectively. These
documents describe the GUI for HiRel.



In the body of this document, a dialog is presented to illustrate the interaction between the
user and the program. HARP commands are prefaced with the symbol $ or more commonly
with no special prefix, and user responses within the sample sessions are identified with the
symbol > preceding the response.

The GO, HARP, and HARPO HiRel software programs have been ported to many computing
platforms and operating systems, which include Sun Microsystems, DEC VAX, IBM-compatibles
286, 386, and 486 PC's, Apollo, Alliant, Convex, Encore, Gould, Pyramid, and Berkley
UNIX 4.3, AT&T UNIX 5.2, DEC VMS and Ultrix, and MS DOS, respectively.

The IBM-compatible PC 16-bit version requires a minimum of 512K of memory as well as a
floating-point accelerator. Throughout the text, differences between the PC 16-bit version and
the full version are noted. The PC 32-bit version running under DOS or 0S/2 gives the full
capability of the Sun or VAX versions.

The user is reminded that using HARP as a combinatorial fault tree solver is computationally
inefficient, although convenient if the user is accustomed to using HARP. However. the fault
tree is particularly useful when fault/error handling is included in the model or when sequence
dependencies are modeled. Each model is no longer combinatorial.



Chapter 2

Creation of Files

This section presents an overview of the HARP program structure, exccution flow, and
the files it generates. Textural HARP executes on DEC VAX workstations under VMS, Sun
Microsystem workstations under UNIX, and IBM-compatible 286, 386, and 486 PC’s under
MS DOS and 0S/2. Textual HARP requires an ANSI standard Fortran 77 compiler and has
been compiled with Lahey and Microsoft FORTRAN for PC's. It is compatible with a wide range
of computing platforms because it was written in ANSI standard Fortran 77 for wide portability.
HARP creates ASCHI files, which are compatible with most computing platforms. For example,
files crcated under the PC environment can be executed by a DEC VAX. In this way, a PC can
be used as a workstation for input and output processing. and VAX can be used for large systemn
computations. HARP has an interactive prompting input capability and is composed of three
stand-alone programs: tdrive, fiface, and harpeny. (See fig. 2.) As the user successively executes
the programs in this order. they create files that are required by downstream programs.

CHANGE MODEL

PARAMETERS
HARP / MCI-HARP

HARP
TEXTUAL

INPUT TDRIVE FIFACE HARPENG
MARKOV TRANSITION | MARKOV
CHAIN MATRIX CHAIN
GENERATOR | SETUP SOLVER
XHARP , .
GRAPHICAL OUTRUT Al
INPUT PM-HARP
TDRIVE FIFACE HARPENG
MARKOV TRANSITION | MARKOV
CHAIN MATRIX CHAIN
GO | GENERATOR | SETUP SOLVER
GRAPHICAL >
INPUT

CHANGE MODEL

PARAMETERS

Figure 2. HARP execution and flow relationship to GO and HARPO.

The programs also accept user-gencrated or modified files created with a text editor. Thus,
the user has the option to use the interactive input capability or simply input user-created files.
The input to tdrive can also come from files generated by GO. The output of textual HARP are
tabular structured files. These files can be used as input to HARPO, which allows the user to
graphically display the tabular data in a wide variety of forms in an interactive mode. Thus,
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as an overview, textual HARP is by analogy the central processing unit, GO is a graphical
input to textual HARP that bypasses textual HARP’s interactive input-prompting capability,
and HARPO is the graphical output processor that reads textual HARP’s tabular output files.
(See vols. 3 and 4 of this TP.)

A brief description of the files created by the HARP programs is given here. A detailed
presentation is given in volume 1 of this Techuical Paper. The MODELNAME is specified by
the user when the program tdrive is executed. The user should avoid special characters that
are likely to interferc with the users’ operating system: for example, a MODELNAME called *
would be a bad choice.

2.1. Files Created by tdrive

If the user input is a fault tree, then tdrive creates the following files:

o MODELNAME.DIC A file that contains the name of each conmponent in the model, its
symbolic failure rate, and any fault/error handling information. This file is called the
dictionary file.

e MODELNAME.FTR An interim file created by the program or the fault tree file from the
HHARP graphical input program.

e MODELNAMEINT The fault tree is converted to a Markov chain. This file contains {he
states and state transitions of the Markov chain after conversion.

e MODELNAME.TXT This file contains the textual fault tree description given by the user.

If the user input is a Markov chain. then tdrive creates the following files:

e MODELNAME.DIC' A file that contains the name of cach component in the model. its
svmbolic failure rate. and any fault /error handling information. This file is called {he
dictionary file. This file is optional for Markov chain input but imperative for fault tree
input.

e MODELNAME.INT This file contains the states and state transitions of the Markov chain
as uput by the user. An important point for the Markov chain input: the first state listed in
the MODELNAME.INT file must be the initial state of the systen. That is, if the first line
reads STATEL STATE2 3*LAMBDA, then STATEL is assumed to be the initial state of the
Markov chain.

2.2. Files Created by fiface

The following files are created by fiface:

e MODELNAME.ALL This file contains the all-inclusive next faults rates if HECESSAry;
otherwise, it is empty.

e MODELNAME.MAT This file contains the sparse matrix format of the Markov chain. Row
and column values of nonzero entries are listed in ascending order.

e MODELNAME.SAM This file contains the same-type next faults rates if necessary;
otherwise, it is empty.

e MODELNAME.SYM This file contains symbol table information for the HARP engine

prograimn.

e MODELNAME.USR- This file contains the user-defined next faults rates if necessary;
otherwise, it is empty.



2.3. Files Created by harpeng

The following files are created by harpeng:

e MODELNAME.INP—This file contains the user input values for symbolic failure and repair
rates. If desired, this file can be used for future runs (called an echo file by the harpeng
progranm.

¢ MODELNAME.PT* --This file contains the unreliability values. It can be used if a plot
program is available. (The symbol * is an integer from 1 to 9.)

e MODELNAME.RS*—This file contains the results of the program execution. The file lists
the values given to symbolic failure or repair rates, solution values for coverage models, failure
state probabilities (if input is a Markov chain, it can have some active state probabilities if
requested), and unreliability and reliability values and bounds information. (The symbol *
is an integer from 1 to 9.)



Chapter 3

Fault Occurrence/Repair Model
(FORM)

This chapter addresses the construction and interpretation of FORA's for fault trees and
Markov chains. We begin with a model of a simple system consisting of three processors. Only
one processor is needed for the system to remain operational. For now. fault /error handling
mechanisms are disregarded. When a processor fails, it is simply discarded and no recovery or
repair is attempted.

3.1. Three-Processor System Fault Tree

The fault tree input is demonstrated first. Because fault /error handling is ignored. the FEHMI
model type none is used when entering the dictionary information. After entering the dictionary
information. the strueture of the model is entered as port rayed in the fanlt tree of figure 3. When
using HARP with textual input. the user normally first sketches the system fault tree and labels
it as shown in figure 3. Each member of the fault tree is labeled with a unique node number.
During the input dialog. the user is asked to identify the connection of the fault tree members
by specifying the node numbers. In this example. the node numbers happen to correspond
to the basic event component ID numbers, also called the tvpe numbers. Although the node
numbers must be unique, the basic event component 11D's are not required to be unique, that
is, all the basic events can be the same type, say 1. A component 1) is a positive integer that
points to a dictionary description of the specified basic event. As the user inputs the NAME
for the component ID, as prompted by HARP, the dictionary file is automatically created in
ASCII format and can be viewed after the software program fdrive completes execution. The
dictionary file contains the component name. the symbolic failure rate® for that component.
and any specified FEHM. During execution of harpeng, the user is asked to specify the failure
distribution and its numerical values for cach component. During initial model input requested
by tdrive, the user is asked to identify the component ID for each basic event node and to
specify a replication factor, a positive integer. The use and significance of the replication factor
are demonstrated in section 3.2,

Upon completion of the first program tdrive, the model has been converted to a Markov
chain, although this process is transparent to the user. An ASCII file containing the Markov
chain is created and identified as MODELNAME.INT. The corresponding Markov chain is shown
in figure 4. The state 1.1.1 represents the system with each of the processors operating. With
rate A3, the third processor fails, and the system enters the state with only the first two processors
rununing, that is, state 1,1,0. Likewise, with rate A2. the second processor fails, and the system
enters state 10.1. With rate Al. the first processor fails, and the system enters state 0,1,1. Now
from this state, one of two events can occur: either the second processor can fail or the third
processor can fail. The first event leaves the system in state 01,0 and the second event leaves the
system in state 0,0,1. Analogous transitions emanate from states 1,1,0 and 1,0,1. Once there are
two failures, (i.e., states 1,0,0; 0,1,0; and 0,0,1) the next failure crashes the system. From these
states, F'1 is entered upon failure of the first processor, F2 when the second processor fails and

6 A better term is failure distribution; failure rate is used instead to simplify the input.
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FBOX Node 5

Node 4

Node 1 QNode 2 Node 3
2

Figure 3. Three-processor fault trec representation.

Figure 4. Markov chain generated from fault tree of figure 3.

F3 when the third processor fails. The program fiface is executed to create the sparse matrix’
data structure format needed by the HARP engine. Finally, the engine itself is executed.

The three program dialogs for the example shown in figure 4 are presented in the following
sections. In the dialogs, a program request has no special prefix, and a user response is preceded
by the symbol >.

3.1.1. tdrive Dialog for Input of Fault Tree

In the following dialog, the program tdrive creates the file 3PFT1.INT that contains the
Markov chain generated from the input fault tree. The data in the 3PFT1.INT file are always
printed in ascending row-wise order with state names being positive integers. This output is
called SORTED output. 3PFT1.DIC lists the dictionary information. Both of these files are in

7 Matrix is A(t) as described in volume 1 of this Technical Paper. A matrix is sparse when most of its entries are zero.
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appendix A as is 3PFT1.TXT, which contains the fault tree input information. The dialog is as
follows:

$ tdrive
HARP---Version 7.0, February 1993
NASA Langley Research Center/Duke University
Program Tdrive
Defaults are Invoked by "CR", Inputs are Case Insensitive
Question? ( "?" or "help" )

FAULT TREE (F) or Markov Chain (M)?

> f
Modelname?
> 3pftil * Must be a legal filepname without extension, .e.g., x

* 8 max. characters on a PC] *
NAME for component ID 1. Enter "/d" or "done" if finished.
> processorl * Avoid using special characters *
Symbolic failure rate? * Numerical values are requested in fiface *
* and harpeng. Avoid using special characters *
* such as $, &, etc. *
> lambdal
Component FEHM?
> none
Default Selected: FEHM Model set to "NONE"
Continue => Y  Reenter => N
>y
NAME for component ID 2. Enter "/d" or "done" if finished.
> processor?2
Symbolic failure rate?
> lambda2
Component FEHM?
> none
Default Selected: FEHM Model set to "NONE"
Continue => Y Reenter => N
>y
NAME for component ID 3. Enter "/d" or "done" if finished.
> processor3

Symbolic failure rate?



> lambda3

Component FEHM?

> none

Default Selected: FEHM Model set to "NONE"

Continue => Y Reenter => N

>y

NAME for component ID 4. Enter "/d" or "done" if finished.

> done
Fault Tree Description.
Enter "/d" or done" for gate/box entry, ? for dictiomary,
or "/X" to correct input error.

Basic event node 1:

Component ID? * HARP associates an integer with each component

* name shown in the modelname.dic file to simplify

*

*

* the code and to simplify basic event specification *

> 1

Replication factor? * When basic events have the same failure rate symbol, *

* the specification of a replication factor greatly

* simplifies the HARP created Markov chain model

> 1

Summary: Basic event node 1: 1 of component 1

Continue => Y Reenter => N, (Default = Y)

>y

Enter "/d" or done" for gate/box entry, 7 for dictionary,
or "/X" to correct input error.

Basic event node 2:

Component ID?

> 2

Replication factor?

> 1

Summary: Basic event node  2: 1 of component 2

Continue => Y Reenter => N, {(Default = Y)

>y

Enter "/d" or done" for gate/box entry, 7 for dictionary,

or "/X" to correct input error.

10
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Basic event node 3:
Component ID?
> 3
Replication factor?
> 1
Summary: Basic event node  3: 1 of component 3
Continue => Y Reenter => N, (Default = Y)
>y
Enter "/d" or done" for gate/box entry, ? for dictionary,
or "/X" to correct input error.
Basic event node 4:
Component ID?
> done
Enter "/X" to correct input error, ? for help.
Node 4: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> and
Enter number of incoming arcs: * Specify the actual number of arcs, not *
* the replicated number, i.e., for *
* Replication factor =3, specify one arc *
> 3
Enter ID number of source node for arc 1: * Its a good idea to first
* draw a sketch of the tree
* labeling the nodes
* numerically,see fig. 12,
* Users Guide, vol.1.
> 1
Enter ID number of source node for arc 2:
> 2
Enter ID number of source node for arc 3:
> 3
SUMMARY: Node 4: TYPE AND , 3 INPUTS: 1 2 3

Continue => Y Reenter => N, (Default = Y)
>y

Enter "/X" to correct input error, ? for help.
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Node 5: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> fbox

Enter ID number of source node for arc 1:
> 4

Summary: FBOX node &: INPUT: 4

Continue => Y Reenter => N, (Default = Y)
>y
TRUNCATE the model after how many failures? * State truncation bounds, *
* see sec. 3.4.2, vol. 1 *
> 0
Default selected: no truncation.
Include state tuples as comments in .INT file? * tdrive will convert the *
* fault tree into an equi- *
* valent Markov chain. State *
* tuples identify each state *
> n
Default selected: No state tuple notation.
FT2MC: Converting fault tree to Markov chain .
FT2MC: Successful completion
8 internal Markov chain states generated
7 unique nonfailure states * 7 merged operational *
* states were formed  *
3 failure states generated for HARP engine
Model information in file: 3PFT1.INT

Dictionary information in file: 3PFT1.DIC
3.1.2. fiface Dialog for Fault Tree Model

The next step is to run fiface. Its purpose is twofold: (1) fiface puts the Markov chain into
the correct format needed by the HARP engine (a sparse matrix format with entries in column
order), and (2) fiface adds any necessary coverage information. In this example, only the first
task is applicable because no FEHM’s were specified. The output files of fiface are 3PFT1.MAT,
which contains the matrix and 3PFT1.SYM, which contains symbolic information. These files
are also in appendix A. The dialog is as follows:

$ fiface
HARP---Version 7.0, February 1993
Program FIFACE

12



Modelname?

> 3pfti

Matrix and symbol table information in: 3PFT1.MAT * fiface created the *
* transition matrix , *
* see Users Guide, vol.1, =

* section 1.3 *
3.1.3. harpeng Dialog for Fault Tree Model Solution

Next, we run the engine harpeng to obtain the solution to the problem. The results are stored
hlﬂCBPFTLRSIandan»gvmlm;mpmuth.Thedhkgisasﬁﬂow&

$ harpeng

- The Hybrid Automated Reliability Predictor -
——————————— Release Version 7.0 --—-—--—---——-
————————————— February 1993 ---------omco-

Use an echo file from a previous run as the input file? y/n 7

> no * An echo file is automatically written by *
* the execution of harpeng which contains *
* all the input data. This file may be *
* altered with a text editor for multiple *
* executions of harpeng when the model *
* configuration is unchanged *

Modelname 7
> 3pftl

Output files:

3PFT1.RS1 -- Reliability and state probabilities
3PFT1.PT1 —-- Graphics information
————— WORKING -----
3PFT1.INP -~ Input file or echo of input
Declare meaning for symbol LAMBDA1 ( "?" or "help" )

> 1

For constant failure rate: LAMBDA1

Nominal value?
> .001

(+/-) Variation? (Must be less than nominal. "?" will allow reentry. )

* Variation not asked in PC 16-bit HARP version *

13



> 0

Declare meaning for symbol LAMBDA2 ( "?" or "help" )
> 1

For constant failure rate: LAMBDA2

Nominal value?

> .001
(+/-) Variation? (Must be less than nominal. "?" will allow reentry. )
* Variation not asked in PC 16-bit HARP version *
> 0
Declare meaning for symbol LAMBDA3 ( "7" or "help" )
> 1

For constant failure rate: LAMBDA3
Nominal value?
> .001
(+/-) Variation? (Must be less than nominal. "?" will allow reentry. )
* Variation not asked in PC 16-bit HARP versiom *
> 0
Redefine symbol(s) meanings or their values, or correct an error (y/n)?
> n
Mission time? (Hours):
> 10
Mission time reporting interval? (Hours):
> 10
Compute Parametric Bounds using SIMPLE Model? (y/n) ? no
* Bounds disallowed in PC 16-bit HARP version *
Calculating State Probabilities...
0 Reports from the GERK ODE solver. * The non-stiff ordinary *
* differential solver reports *
* any unusual long solutions *
Please select:

1: Scroll through the result file?

2: Solve same model with new mission time or near-coincident fault rates, etc.?
3: Redefine symbol(s) meaning(s) and re-run model?

4: Exit the program?
> 4

14



3.2. Variation of Three-Processor System Fault Tree

In the previous example, Al = A2 = A3 indicates that the processors are statistically identical
components. Because we are not concerned with which processor fails (merely with the fact that
a fault has occurred), we can lump the processors into a single basic event as demonstrated in
figure 5(a). The notation 3 x 1 designates three replications of dictionary component type 1 (the
processors in this case). The tdrive program converts the fault tree to the Markov chain shown
in figure 5(b). Notice that the number of states in the Markov chain is reduced from 10 in the
previous example to 4. State 3 represents the fully operational system. With failure rate 3 A
(the coefficient 3 is the number of processors available), the system makes a transition to state 2
where only two processors arc available. Likewise, with rate 2 A the system goes to state 1
with only one processor and finally, the failure of the remaining processor with rate A brings the
system down.

eInt

{a) Fault tree with replicated events.
) Corresponding Markov chain.

Figure 5. Three-processor system.

Figure 6 shows which states are being merged in the Markov chain generated from the fault
tree of the previous example.

| . | r - — 7 c — — 1
I { |

— - 4
3 2 1
R , System
Processors Processors Processor o
. . . failed
available available avatlable

Figure 6. Merging of three-processor Markov chain.
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The three program dialogs for the merged fault trec example are presented in the following
sections. As in the previous example, and for all subsequent examples. the output files are listed
in appendix A.

3.2.1. tdrive Dialog for Input of Merged Fault Tree

$ tdrive
HARP---Version 7.0, February 1993
NASA Langley Research Center/Duke University
Program Tdrive
Defaults are Invoked by "CR", Inputs are Case Insensitive
Question? ( "?" or "help" )

FAULT TREE (F) or Markov Chain (M)?

> f
Modelname?
> 3pft2

NAME for component ID 1. Enter "/d" or "done" if finished.
> processor

Symbolic failure rate?

> lambda
Component FEHM?

> none
Default Selected: FEHM Model set to "NONE"

Continue => Y  Reenter => N

>y

NAME for component ID 2. Enter "/d" or "done" if finished.
> done

Fault Tree Description.

Enter "/d" or done" for gate/box entry, 7 for dictionary,

or "/X" to correct input error.
Basic event node 1:

Component I1D7

> 1

Replication factor?

> 3
Summary: Basic event node 1: 3 of component 1

Continue => Y Reenter => N, (Default = Y)
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>y

Enter "/d" or done" for gate/box entry, ? for dictionary,

or "/X" to correct input error.
Basic event node 2:

Component ID?

> done

Enter "/X" to correct input error, ? for help.

Node 2: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> and

Enter number of incoming arcs:

> 1

Enter ID number of source node for arc 1:

> 1

SUMMARY: Node 2: TYPE AND , 1 INPUTS: 1

Continue => Y Reenter => N, (Default = Y)
>y
Enter "/X" to correct input error, 7 for help.
Node 3: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> fbox

Enter ID number of source node for arc 1:
> 2

Summary: FBOX node 3: INPUT: 2
Continue => Y Reenter => N, (Default = Y)
>y
TRUNCATE the model after how many failures?
> 0

Default selected: no truncation.
Include state tuples as comments in .INT file?
> n
Default selected: No state tuple notation.
FT2MC: Converting fault tree to Markov chain
FT2MC: Successful completion
4 internal Markcv chain states generated
3 unique nonfailure states
1 failure states generated for HARP engine
Model information in file: 3PFT2.INT
Dictionary information in file: 3PFT2.DIC

17



3.2.2. fiface Dialog for Merged Fault Tree Model

$ fiface
HARP---Version 7.0, February 1993
Program FIFACE
Modelname?
> 3pft2

Matrix and symbol table information in: 3PFT2.MAT
3.2.3. harpeng Dialog for Merged Fault Tree Solution

After executing harpeng, the user should compare the results file 3PFT2.RS1 with the
previous example 3PFT1.RS1. As expected, the unreliability values for each are identical because
Al = A2 = A3. By merging the states, the user can greatly reduce the size of the corresponding
Markov chain and make analysis much faster (and if the model is large, can even make an
otherwise intractable solution possible).

$ harpeng

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 --—-----=--—--
—————————————— February 1993 ------—-——-~=-=-~
Use an echo file from a previous run as the input file? y/n 7
> no
Modelname 7
> 3pft2

Qutput files:

3PFT2.RS1 -— Reliability and state probabilities
3PFT2.PT1 -- Graphics information
————— WORKING —----
3PFT2.INP -- Input file or echo of input
Declare meaning for symbol LAMBDA ( "?" or "help" )

> 1

For constant failure rate: LAMBDA

Nominal value?
> .001

(+/-) Variation? (Must be less than nominal. "?" will allow reentry. )
> 0

Redefine symbol(s) meanings or their values, or correct an error (y/n)?

> n
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Mission time? (Hours):
> 10
Mission time reporting interval? (Hours):
> 10
Compute Parametric Bounds using SIMPLE Model? (y/n) ? n
Calculating State Probabilities...
0 Reports from the GERK ODE solver.

Please select:

1: Scroll through the result file?

2: Solve same model with new mission time or near-coincident fault rates, etc.?
3: Redefine symbol(s) meaning(s) and re-run model?

4: Exit the program?

> 4

3.3. Three-Processor System Input as a Markov Chain

We now input the three-processor system as the Markov chain of figure 7. The description of
the chain is given in the previous example. In program tdrive, the dictionary need not be entered
for Markov chains that do not have repair nor fault handling. (The dictionary must be entered
for a fault tree, a Markov chain with repair, or a Markov chain with coverage.) The programn
fiface is executed to create the sparse matrix data structure format needed by the HARP engine.
The engine, as before, is run to solve the model. Qutput files are given in appendix A.

-

7. Three-processor system input as a \larkov chain.

Figure

For the Markov chain input, the user is asked some different questions than for the fanlt
tree input. When a fault tree is converted to a Markov chain in tdrive. the output is always
printed in ascending row-wise order with state names being positive integers. This output is
called SORTED output and is printed in the MODELNAME.INT file. For Markov chain input.
the user has the choice of entering data in a SORTED or UNSORTED manner. If the entries
are UNSORTED, it means one of two things; either the state names are symbolic (STATEL. F1,
3P, etc.) or the entries are not in row-wise ascending integer order. Additionally, an instruction
Is posted that tells the user that the first state listed must be the initial state of the system. If
this is not the case, the solution results can be incorrect. Next, the user is asked if the model is
to be solved AS IS. The AS IS option means that there are no fault/error handling models for
any of the components and only the FORM is to be solved.
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3.3.1. tdrive Dialog for Input of Three-Processor System

$ tdrive
HARP---Version 7.0, February 1993
NASA Langley Research Center/Duke University
Program Tdrive
Defaults are Invoked by "CR", Inputs are Case Insensitive
Question? ( "?" or "help" )

FAULT TREE (F) or Markov Chain (M)?
> mc
Modelname?
> 3pmc

Will any FEHMs be used? (y/n) 7 n

Will state names be in row-wise order listed as ascending integers
beginning with 17 (i.e., no symbolic input for state names).

(y/n default =n ) 7 n

The first state entered must be the initial state,i.e., for the
line —- S1 S2 RATE -- "S1" is the initial state.

Begin Markov chain entry with "read filename", or simply list
the transitions using the format: S1 S2 Rate.expression
(Enter "/d" or "dome", "?" or "help")

Begin:

> 3 2 3*lambda

> 2 1 2%xlambda

> 1 F1 lambda

> done
Model information in file: 3PMC.INT

Dictionary information in file: 3PMC.DIC
3.3.2. fiface Dialog for Three-Processor System

Now run the fiface program as before. This time the user is asked whether the model has
repair (for this example, there is no repair). In addition, the user is asked whether any active
state probabilities are desired. Thus, the user can obtain the probabilities for any state, not just
the failure states (as in the fault tree, SORTED, input). After running fiface, use a text editor
to compare the contents of the 3PFT2.MAT file from this run with that of the previous example
(3PFT2.MAT from section 3.2). They are the same. It serves to reason that the results files
(3PFT2.RS1) are also the same. Compare the results files in appendix A. The harpeng run is
not listed here because it is identical to the previous run. The dialog is as follows:
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$ fiface
HARP---Version 7.0, February 1993
Program FIFACE

Modelname?
> 3pmc
Model is to be solved "as is".
Matrix and symbol table information in: 3PMC.MAT
Does this model have repair? - y/n:
> n

PLEASE NOTE: THE FIRST STATE IN THE .INT

FILE IS CONSIDERED THE INITIAL STATE OF THE MODEL.
Do you want to see the state probabilities for any active states?
This information is automatically printed for any failure states. (y/n)?

> n
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Chapter 4

Fault /Error Handling Model (FEHM)

4.1. Full Model

Let us expand our three-processor example. (See fig. 7.) Each processor in states 3,2,and 1
still fails at a constant rate A. However, upon processor failure, the system enters the Fault
Active state. (See fig. 8.) In this state, the system attempts to detect the fault with a constant
detection rate 6. If the fault is detected with probability p, the faulty processor is removed and
the system enters the state with one fewer processor. Otherwise, if the fault goes undetected, it
propagates through the system cansing system failure with probability 1 — p. This single-point
failure state is recognized as state FSPF. which is a failure due to a single-point fault. If all
faults are detected, we eventually exhaust our supply of processors entering the failure state F1.

3*A

Figure 8. Three-processor system with active faults.

Next, we generalize and replace the Fault Active state shown in figure 8 with a box, perhaps
containing many states, as shown in figure 9. Each box contains the “fast” transitions of fault
recovery and hence is referred to as the FEHM. The FEHM captures in a few parameters the
sequence of events that occur within the system once a fault occurs. Its general structure is a
single-entry (up to) four-exit model, which is entered when a fault occurs. The exits represent
possible outcomes ol the attempted system recovery. As demonstrated in figure 9, the FEHM
can be inserted only between operational states.

T3 DL
3A Jepnul - o 2 el - .@_\__®

Figure 9. Three-processor system with FEHM's inserted.

In general, what is inside the box may or may not be a single Markovian state, which is the
Fault Active state shown in figure 8. It can be as simple or as complex as the user wants. For the
moment, it does not matter what is in this box. What is important is that we analyze the FEHM
to determine the probability of successful permanent coverage—that is, detecting the fault and
reconfiguring with one fewer processor. Accordingly, with the complementary probability, the
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system fails. The path taken in the case of a successful reconfiguration is the C exit from the
FEHM and the path to system failure is the S exit. For this example, the contents of the FEHM
are represented by the Fault Active state of figure 8. The structure of the FEHM for this example
is shown in figure 10.

Fault Occurs

C

Permanent Coverage

FEHM

S

Single-Point Failure

Figure 10. Partial structure of HARP FEHM.

As shown in figure 11, the FEHM box has been reduced to a branch point. The parameter ¢
(in this case, ¢ = p) represents the probability of successful detection and reconfiguration. The
complementary probability parameter leading to state FSPF is denoted by an s (in this case,
s =1 —p). The overall model that is solved to predict the reliability of the system is shown in
figure 12.

Figure 11. Replacing FEHM’s by a branch point.

3 BED e KZ\ 2%\ k¢

F1

(1)
U

2x N % &

Figure 12. Instantaneous jump model of three-processor system.

4.2. Development of Instantaneous Jump Model

The reduction from the full model of figure 8 to the instantaneous Jjump model of figure 12
is the general procedure HARP uses to solve large and stiff models. Models, such as figure 8,
with many orders of magnitude between the slowest and fastest rates are called stiff systems.
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We separate the system along temporal lines (with respect to occurrence times) according to the
relative magnitude of the state transition rates. The states representing failures (slow transitions)
are grouped into the FORM and the fast recovery states arc grouped into the FEHM (also
referred to as the coverage model). This is the concept of behavioral decomposition (refs. 6
and 7). The FEHM is solved in isolation, reduced to a branch point, and inserted into the
FORM, as shown in the example.

Behavioral decomposition is used not only for model solution but also for model specification.
The user enters the FORM and FEHM separately and thus is shielded from specifying a huge
overall model. Note that the combined model, like that of figure 8, which is both stiff and
potentially large, is never constructed by the user nor generated by HARP. The solution is
designed to use a good decomposition approximation so that a small nonstiff model is solved
rather than a large stiff model. This largeness avoidance technique is the basis of HARP.

The user should ensure that adequate separation (at least two orders of magnitude) occurs
between the parameters in the FORM and FEHM models. Otherwise, the results produced by
HARP can produce an unacceptable conservative result. In the event such a condition results,
HARP issues a warning message to that effect. The degree of acceptable conservative error is
a function of the fidelity of the model, the accuracy of the input data (which is typically in
error by at least one order of magnitude), user requirements, and other less important factors.
Engineering judgment is the prime consideration when any modeling data are accepted.
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Chapter 5
Modeling Permanent Faults

Assume that the boxes in figure 9 now represent a subset of the CARE III single fault
model (ref. 8) to demonstrate the idea of permanent faults. A fault is permanent if its faulty
manifestation persists for a long time. The time period is relative to the criticality of the
application, so for a flight control application, a long time would be on the order of tenths of a
second. For a system such as that shown in figure 9. the best action upon detecting a processor
with a permanent fault is to discard the processor. Thus, the svstem survives and functions
with one less processor. A portion of the CARE 11T model is shown in figure 13.

Figure 13. Portion of CARE I single fault model.

The fault is detected with constant rate 8. Ounce detected, the system removes the faulty
unit and continues processing. Before detection, the fault can produce an error with constant
rate p. Should the error be detected with probability ¢, the presence of the fault is recognized
and recovery can still occur. This partial CARE model assumes that once detected, the fault is
covered all the time. This assumption is demonstrated by the parameter P 4. Should the error
not be detected., it propagates through the system model and causes system failure. This system
failure is a conservative modeling assumption and is made to simplify the model because these
failure conditions are typically improbable. The Permanent Fault state represents the C exit
from the FEHM leading to a degraded state, and the FAIL state corresponds to the S exit
leading to the FSPF state.

For this example the FEHM probabilities (ref. 7). when replaced by a branch point, are
4 p
= —+ L
b+p b+ pq

(probability that we take the path from the Active Fault state directly to the Detected state
multiplied by P4) + (probability of taking the path to Active Error multiplied by the probability
of going from Active Error to Detected multiplied by P4) and

p
=" (1-
s 6-+-p( q)
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(probability of taking path from Active Fault state to Active Error state multiplied by the
probability of going from Active Error to FAIL state). However. the HARP user does not
have to calculate these coverage factors; they are automatically computed by HARP based on
user-specified parameters.

Using tdrive to input this example in HARP, we specify the fault tree or Markov chain as
in previous examples. However, we now enter the FEHM model in the dictionary. We present
this example as a fault tree: however it can just as simply be entered as a Markov chain. (See
section 3.3.) As previously noted, the *.DIC, *.TXT, *INT, *.MAT, *.SYM, and *.RS1 files

are given in appendix A.

5.1. tdrive Dialog for Input of CARE III Permanent Single Fault
Model

$ tdrive
HARP---Version 7.0, February 1993
NASA Langley Research Center/Duke University
Program Tdrive
Defaults are Invoked by "CR", Inputs are Case Insensitive
Question? ( "?" or "help" )

FAULT TREE (F) or Markov Chain (M)?
> f
Modelname?
> 3pcarel

NAME for component ID 1. Enter "/d" or "done" if finished.
> processor

Symbolic failure rate?

> lambda

Component FEHM?

> care
FEHM filename?

> carel.fhm

File CARE1.FHM does not currently exist

Create now? (y/m) 7 y

st ook oo ok s o o R o o R R K Kok K ok oKk ook ok ok ok ok ok o ok ok ok

* CARE III SINGLE FAULT MODEL (MARKOV) *

Sk oK oo o o o AR R KR kKR koK ok ook ook ok ook oK o o o ok K

All time parameters should be given in terms of HOURS. If you need help
or additional information, type "HELP" when prompted.

Permanent fault probability?
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> 1
Enter the permanent fault model parameters (alpha and beta are both zero,
as is PB):
Delta? (rate - events/hour)
> 360
Epsilon? (rate - events/hour)
> 3600
Rho? (rate - events/hour)
> 180
PA? (0 <= PA <= 1):
>1.0
Q7 (0 <= Q <= 1):
> .999
FEHM information for this component is stored in file CARE1.FHM
Continue => Y Reenter => N
>y
NAME for cowuponent ID 2. Enter "/d" or "done" if finished.
> done
Define interfering component types for near-coincident faults? (Y/N)?
> no
[Not asked in PC 16-bit HARP version.
It’s significance is explained in the
section on near-coincident faults.]
Fault Tree Description.
Enter "/d" or done" for gate/box entry, ? for dictionary,
or "/X" to correct input error.
Basic event node 1:
Component ID?
> 1
Replication factor?
> 3
Summary: Basic event node 1: 3 of component 1
Continue => Y Reenter => N, (Default = Y)
>y

Enter "/d" or done" for gate/box entry, ? for dictionary,
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or "/X" to correct input error.
Basic event node 2:
Component ID?
> done
Enter "/X" to correct input error, 7 for help.
Node 2: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> and

Enter number of incoming arcs:

> 1

Enter ID number of source node for arc 1:

> 1

SUMMARY: Node 2: TYPE AND s 1 INPUTS: 1

Continue => Y Reenter => N, (Default = Y)
>y
Enter "/X" to correct input error, 7 for help.
Node 3: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> fbox

Enter ID number of source node for arc 1:
> 2

Summary: FBOX node 3: INPUT: 2

Continue => Y Reenter => N, (Default = Y)
>y
TRUNCATE the model after how many failures?
>0
Default selected: no truncation.
Include state tuples as comments in .INT file?
>n
Default selected: No state tuple notation.
FT2MC: Converting fault tree to Markov chain .
FT2MC: Successful completion
4 internal Markov chain states generated
3 unique nonfailure states

1 failure states generated for HARP engine

28



Model information in file: 3PCARE1.INT

Dictionary information in file: 3PCARE1.DIC

5.2. fiface Dialog for CARE III Permanent Single Fault Model

$ fiface
HARP---Version 7.0, February 1993
Program FIFACE
Modelname?
> 3pcarel

Matrix and symbol table information in: 3PCARE1.MAT

Which near-coincident fault rate files are to be created?

Enter:

N for NONE (ignore near-coincident faults)

A for ALL (all near-coincident faults are fatal)

S for SAMe (only faults of same type interfere)

U for USeR defined interfering component types

You can type combinations like AU, ASU, SA etc.

Combinations of "N" with A, U or S are not allowed.
[Not asked in PC 16-bit HARP version.
It’s significance is explained in the
section on near-coincident faults.]

> no

Not creating any near-coincident fault rate files.

5.3. harpeng Dialog for Solution of CARE III Permanent Single
Fault Model

$ harpeng

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 —--~-———--—---
—————————————— February 1993 ---——--=--—mc-——
Use an echo file from a previous run as the input file? y/n 7
> no
Modelname 7
> 3pcarel

Output files:
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3PCARE1.RS1 -— Reliability and state probabilities

3PCARE1.PT1 -- Graphics information
————— WORKING -----
3PCARE1.INP -- Input file or echo of input
Declare meaning for symbol LAMBDA ( "?" or "help" )

> 1
For constant failure rate: LAMBDA

Nominal value?

> 0.001
(+/-) Variation? (Must be less than nominal. "?" will allow reentry.
>0

Redefine symbol(s) meanings or their values, or correct an error (y/m)?
> no

Mission time? (Hours):

> 10

Mission time reporting interval? (Hours):

> 10
Calculating State Probabilities...

There were 0 Warnings from the GERK ODE solver.

Please select:

1: Scroll through the result file

2: Solve same model with new mission time or near-coincident fault rates, etc.
3: Redefine symbol(s) meaning(s) and re-run model

4: Exit the program.

> 4
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Chapter 6

Modeling Transient Faults and
Transient Recovery

Until now, we have assumed that the only faults to be modeled are permanent. However,
certain faults can be temporary in nature and not cause permanent physical damage but still
result in software errors. These faults are called fransient faults and the effect on the FORM
of such fanlts is represented in figure 14 as the transient restoration transition. Once a fault
is diagnosed as transient and recovery from such a fault is successful. the system returns to an
operational mode without reconfiguring the system, that is, a hardware module is not removed
from the system. Transient faults can be modeled by using the Direct ARIES, CARE III,
and ESPN FEHM’s. These models allow the user to model specific system behaviors resulting
from the occurrence of transient faults. The particular choice of FEHM depends on the system
application and its susceptibility to transients. The other FEHM's, the probability and moments,
probability and distributions, and probability and empirical data, can also be used to account
for transient faults, but no FEHM modeling detail is allowed.

Fault Occurs

C
- FEHM -
Transient Permanent
Restoration Coverage

S

Single-Point Failure

Figure 14. Partial structure of HARP FEHM.

The incorporation of transient faults in our three-processor example is shown in figure 15.
While this figure appears similar to figure 9, the boxes now show a transition back to the state
from which the box was entered, corresponding to transient restoration.

) * . A
FEHME & 22X rEnl -@—@

Figure 15. Three-processor system with FEHM’s showing the C, S, and R exits.
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6.1. Direct Coverage Values Model

If the user chooses. the coverage values can be input directly either in the fiface program or
the harpeng program. In this case the FEHM type is VALUES. When prompted for the FEHM
type in program tdrive, the user should respond with the keyword VALUES. No input file is
used: instead. in fiface the user is given the option of entering the specific values for C and R.
If they are not entered in fiface, they are requested in harpeng. The value for S is calculated as

(1-C-R).
6.2. ARIES Transient Recovery Model

To demonstrate the modeling of transient faults, assume the boxes in figure 15 now represent
the ARIES model (ref. 9). (See fig. 16.) ARIES is a phased recovery model that allows the user
to specify how many phases comprise the recovery procedure.

{

Fault
Occurs

Processing

Figure 16. ARIES transient fault recovery model.

In each phase of the recovery, the duration of which is constant, the system attempts
recovery. If successful, the system returns to the Normal Processing state without discarding
any components. If the recovery in a particular phase is unsuccessful, the next phase attempts
to locate and recover from the fault. If all phases are ineffective, the fault is assumed to be
permanent. We discard the faulty component and continue running with one fewer component
(provided that we still have enough to leave the system operational). If the fault is a critical
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one from which the system as a whole cannot recover, the System Crash state is entered by
the transition arc labeled (with probability) 1 — CR. This state represents the S exit from the
FEHM and the “Permanent Fault Recovery” state represents the C exit. The transient faults,
leaving the FEHM via exit R, are realized by state Normal Processing.

The exit probability calculations® for the ARIES model are as follows:

¢ =(PEyp1)cov)

NP
s =(1~ CR)+(PENp4 X1 - cov)+ > PF,

1=1
NP
r=> PR
=1

where .
PF, = PE;(1 - exp#T)

These calculations are performed by the HARP program and not by the user. The user-input
data for the ARIES model are delineated in the following example as annotations enclosed in
square brackets. For this example, we provide only the coverage model input. Like the previous
example, the model is input in program tdrive. Because the output files from tdrive and fiface are
similar to previous runs, the harpeng output file 3PARIES1.RS1 and the FEHM file ARIES. FHM
are listed in appendix A.

6.3. tdrive Dialog for Input of ARIES Model

3k o e e ok 3k ok e oKk ok e sk ok ok ok ak ko ok ok ok ok ok ok ok 3k ok ok ok ok sk sk 3k ok ok ok ok

* ARIES TRANSIENT FAULT RECOVERY MODEL *

ok 3k ok sk e 3 ok e ok ok ke ok ek ok ok ok e ok ok 3 ok ak ok ke 3k ok sk sk ok sk sk ok ok ok ok ok

Enter number of recovery phases (int, max 10): [NP]

>3

Transient fault probability?

> .9

Transient fault mean duration? (in seconds):

> .005

Catastrophic fault probability, given that a fault occurs? [1-CR]

> .001

Duration of each recovery phase? (seconds): [Ti, deterministic time,
conservative assumption]

Phase 1:

> .8

8 Parameter cov is an enhancement to the original ARIES FEHM model in recognition that after the system determines
the fault is permanent, some recovery action is necessary. The success of that action is specified by cov, a probability.
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Phase 2:

> .2
Phase 3:
> .1

Recovery effectiveness probability of each phase? [PR(i)]
Phase 1:
> .8

Phase 2:

Failure rate of the recovery system hardware (in seconds): [p]

0.0

Coverage of permanent fault recovery procedure: (probability) [cov]
> .85

FEHM information for this component is stored in file ARIES.FHM
6.4. CARE III Transient Single Fault Model

The CARE III single fault model can be expanded to model transient and intermittent
faults. As figure 17 shows, permanent faults are still modeled in the same manner as
previously described, with a« = 8 = Pg = 0. (The user is never permitted to enter these default
parameters.) For the transient model, the fault can now be either active or benign. Once
the fault enters the Benign Fault state, it is assumed to have disappeared before the system
experienced any adverse effects (8 = 0). The disappearance of the transient signifies that the
FEHM exit R is being taken. Again, in the Active Error state, the transient can go benign.
If the error is detected (with probability g), the faulty element is removed from service with
probability Pg.

With the complementary probability, the fault is assumed to be transient and the element
is returned to service without reconfiguring the system. If the error is detected from the
Active Error state, the faulty element is removed from service with probability P4. With the
complementary probability, we remain in the FEHM because the fault is still present. Note, the
two Detected states and the Benign state (for the transient model) are instantaneous states, as
denoted by the dotted transitions leaving them. By setting o > 0 and 3 > 0, we can also model
intermittent faults. (See the following section.)

The next section lists the dialog for the input of the coverage model in program tdrive: The
FEHM file SPCARE2.FHM and the harpeng output file SPCARE2.RS]1 are listed in appendix A.
Using the CARE FEHM example to model transient faults, we let the parameter o be large in
relation to the values of p and §. Once again, the calculation of the exit probabilities C, R, and S
is performed automatically by HARP, and each occurrence of the CARE III FEHM is replaced
by a three-way branch point.
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Active
Detected

A

Active Active

Fault

Benign
Fault

Benign
Detected

Figure 17. Complete CARE 111 single fault model.

6.5. tdrive Dialog for Input of CARE III Transient Single Fault
Model

ok ok s o ok KoK R Kk Sk ok o ok KoK ok oK KK O o ok sk ok K o KR K K
* CARE ITI SINGLE FAULT MODEL (MARKQV) *
3 4 2 o 3k 3 ok ke ok ok ok ak sk ko o o ok 3k 3k ok ok ok ok 3k 3k ok Kk ok 3 ok ko ok 3k ok ok
All time parameters should be given in terms of HOURS. If you need help
or additional information, type "HELP" when prompted.
Permanent fault probability?
>0
Intermittent fault probability?
>0
Transient fault probability is: 1.0000000000000
Enter the transient fault model parameters
(alpha is positive but beta is zero):
Alpha? (rate - events/hour)
> 36000

Delta? (rate - events/hour)
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> 360
Epsilon? (rate - events/hour)
> 3600
Rho? (rate - events/hour)
> 180
PA? (0 <= PA <= 1):
> .5
PB? (0 <= PB <= 1):
> .5
Q7 (0 <= Q <= 1):
> .9

FEHM information for this component is stored in file CARE2.FHM
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Chapter 7

Intermittent Faultsin Coverage Model

7.1. Overview

A third class of faults known as intermittent faults can be modeled. These faults are
particularly insidious as they are always present but not always active. In the active state.
the intermittent fault causes the system to operate incorrectly; however, in the benign state, the
intermittent fault does not affect the operation of the system. The fault can switch between the
active and benign states at any time (@ > 0 and 3 > 0). The FEHM model, like in the transient
case, has the C, S, and R exits. (See fig. 14.) The C exit is used when the intermittent is treated
as a permanent fault, the S exit is used when the fault has produced an error from which the
system cannot recover, and the R exit is used when the intermittent is treated as a transient.
(That is, the time between activations of the intermittent fault can be long and results in the
incorrect assumption that the fault is a transient.)

The CARE III single fault model again provides us a good example for which we provide
the coverage model input. In previous examples demonstrating the CARE III FEHM model,
we stated that the particular fault type that we are modeling is going to occur 100 percent of
the time; that is, the model is the permanent fault. This model is selected when answering the
following questions:

“A Fault is Permanent with what probability? "
"A Fault is Intermittent with what probability? "

For the permanent model, we responded 1.0 to the first question, and for the transient model,
we responded 0.0 to both questions (thus making the transient model a default of 1.0). Rather
than determining that only one type of fault is likely, perhaps we have studied our system and
found that all three fault types are possible. We can reflect this in our model during the input.
As in the previous two examples, the FEHM file 3PCARE3.FHM and the harpeng output file
3PCARES3.RS1 are given in appendix A.

7.2. tdrive Dialog for CARE III Intermittent Single Fault Model

e o o oK o KK ook o o oo o R R K oK oK R K KK o KK o o o ok o
* CARE III SINGLE FAULT MODEL (MARKOV) =

ok oK KKK KK KoK oK K ook ok ok KKK o K KKK R o ok S o o ko

All time parameters should be given in terms of HOURS. If you need help
or additional information, type "HELP" when prompted.

Permanent fault probability?

> .2

Intermittent fault probability?

> .2

Transient fault probability is: 0.60000000000000
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Enter the permanent fault model parameters (alpha and beta are both zero,
as is PB):
Delta? (rate - events/hour)
> 300
Epsilon? (rate - events/hour)
> 3600
Rho? (rate - events/hour)
> 240
PA? (0 <= PA <= 1):
> 1
Q7 (0 <= Q <= 1):
> .999
Enter the intermittent fault model parameters:
Alpha? (rate - events/hour)
> 2100
Beta? (rate - events/hour)
> 3000
Delta? (rate - events/hour)
> 360
Epsilon? (rate - events/hour)
> 3600
Rhc? (rate - events/hour)
> 180
PA? (0 <= PA <= 1):
> .9
PB? (0 <= PB <= 1):
> .1
Q7 (0 <= Q <= 1):
> .999
Enter the transient fault model parameters
(alpha is positive but beta is zero):
Alpha? (rate - events/hour)
> 36000
Delta? (rate - events/hour)

> 180
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Epsilon? (rate - events/hour)
> 3600

Rho? (rate - events/hour)

> 180

PA? (0 <= PA <= 1):

> .5

PB? (0 <= PB <= 1):

> .5

Q7 (0 <= Q <= 1):

> .999

FEHM information for this component is stored in file CARE3.FHM
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Chapter 8
ESPN FEHM

One additional coverage model is available to the user, an Extended Stochastic Petri Net
(ESPN). (See refs. 10 to 13.) As shown in figure 18, this FEHM models three aspects of a fault
recovery process: physical fault behavior, transient recovery, and permanent recovery.

R

I }

Transient

Transient
Recovery

Single
Point
Failure

Figure 18. HARP ESPN single fault model.
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The fault behavior model captures the physical status of the fault, such as whether the fault
is active or benign (if permanent or intermittent), or whether the fault still exists (if transient).
Once the fault is detected, it is temporarily assumed to be transient, and an appropriate recovery
procedure can commence. The transient recovery procedure can be attempted more than once.
If the detection/recovery cycle is repeated too many times, a permanent recovery procedure
(reconfiguration) is invoked. If the reconfiguration is successful, the system is again operating
correctly, although in a somewhat degraded state.

8.1. ESPN Specification

The inherent concurrency between the actual fault behavior and the system’s fault/error
handling behavior can be captured effectively in terms of an ESPN (ref. 14). Recall the
composition of a Petri net (PN) bipartite graph: (ref. 15) a set of places P (drawn as circles), a
set of transitions T (drawn as bars), and a set of directed arcs A, which connect transitions to
places or places to transitions. Places can contain tokens? (drawn as dots). The state of a PN,
called the PN marking, is defined by the number of tokens contained in each place.

A place is an input to a transition when an arc exists from the place to the transition, and
a place is an output from a transition when an arc exists from the transition to the place. A
transition is enabled when each of its input places contains at least one token. nabled transitions
can fire, by removing one token from each input place and placing one token in each output place.
Thus, the firing of a transition causes a change of state (produces a different marking) for the

PN.

A Stochastic Petri Net (ref. 16) is obtained by associating with each transition a so-called
firing time. Once a transition is enabled, an exponentially distributed amount of time elapses.
If the transition is still enabled, it then fires. A Generalized Stochastic Petri Net (ref. 17) allows
immediate (zero firing time) as well as timed transitions. Immediate transitions are drawn as
thin bars, timed transitions as thick bars.

An ESPN allows firing times to belong to an arbitrary distribution. Some other extensions
to Petri nets are considered here. An wnhibitor arc from a place to a transition has a small
circle rather than an arrowhead at the transition. The firing rule is changed as follows. A
transition is enabled when tokens arc present in all of its (normal) input places and no tokens
are present in the inhibited input places. When the trausition lires, the tokens are removed from
the normal input places and deposited in the output places as usual, but the number of tokens
in the inhibited input place remains zero.

A probabilistic arc from a transition to a set of output places deposits a token in one (and
only one) of the places in the set. The choice of which place receives the token is determined by
the probability labels on each branch of the arc.

A counter arc from a place to a transition is labeled with an integer value k. This the integer
value changes the firing rule such that a transition is enabled when tokens are present in all of
its (normal) input places and at least k tokens are present in the counter input place. When the
transition fires, one token is removed from each normal input place, while k tokens are removed
from the counter input place. Associated with a particular counter arc can be a counter alternate
arc, which enables an alternate transition when the count is between 1 and k — 1, inclusive. The
alternate transition can fire each time a token is deposited in the counter input place until
k tokens are present. The count remains unchanged by the firing of the alternate transition
because it removes no token from the counter input place. A counter alternate arc is labeled
with a k. Neither the counter arc nor the counter alternate arc are true extensions to Petri

9 A token is a marker that designates flow of model processes.
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nets, as both can be realized by a cascade of normal places and transitions. Rather, the arcs are
useful shorthand notations for such a cascade.

8.2. ESPN Model in HARP

When a fault occurs in the system, a token is deposited in the place labeled Fault. This
token enables the transition T'1. The transition fires immediately, thus removing a token from the
input place. Depending upon whether the fault is permanent, intermittent, or transient, a token
is then deposited in place Permanent, Active Intermittent, or Transient, with probability p,
i, or t, respectively. (These probabilities are user-input values.) Simultaneously, a token is
deposited in place Fault Exists, which represents the presence of an as yet undetected fault. If
the fault is permanent, the token remains in the Permanent place until the model is exited. If
the fault is intermittent. the token that was deposited in Active Intermittent circulates between
places Active Intermittent and Benign Intermittent, thus representing the oscillation of the
fault between the active and benign states. If the fault is transient, eventually the token
that was deposited in place Transient is passed to place Transient Gone, which represents the
disappearance of the fault. Note that if a token exists in both places Transient Gone and Fault
Exists, transition T'5 can fire. This condition represents a transient fault that disappears before
its presence is felt.

While the fault is active and still exists (i.e., a token exists in place Fault Exists and no
token in either places Benign Intermittent or Transient Gone), two things can happen: an error
can be produced or the fault can be detected directly. These two events are represented by
transitions 76 and T'7, respectively. If the self-test procedure is run while the fault is active,
then the fault is detected with probability d. Once an error is produced, it is detected with
probability ¢, or it propagates through the system and causes a system failure.

Once the fault is detected, a token is deposited in place Counter, which serves as a counter for
the number of times transient recovery has been attempted. As long as fewer than k tokens are
in place Counter, transient recovery can begin. When recovery is completed, the fault can still
exist, and the detection/recovery cycle can repeat. If recovery is completed and the transient
fault is gone, T5 fires, and the system is once again functioning correctly. If the recovery has
completed and the intermittent fault has become benign, transitions 76 and T7 wait for the
fault to become active again before they are enabled.

If the fault is detected too often (more than k times), the fault is then assumed to be
permanent in nature, and no automatic recovery process begins. This condition is modeled by the
accumulation of k tokens in place Counter. Once k tokens are present, transition T'11 is disabled
(transient recovery procedures are inhibited) and transition T'12 is enabled (permanent recovery
procedures begin). Once the fault is determined to be permanent, a diagnostic procedure is
invoked to isolate the faulty unit; this condition is represented by a token in place Locate.
The diagnostic procedure is successful with probability [. If the faulted unit is isolated,
the system attempts automatic reconfiguration, which is represented by place Reconfigure.
Reconfiguration is successful with probability r and the token is passed to place Permanent
Coverage, which represents the system again operating correctly, although performance can be
somewhat degraded.

The user input to this submodel are the distributions of times for each transition, and the
probabilities of correct error detection g, fault detection d, fault location , and reconfiguration r.
(Note that the distributions need not be exponential.) The user must also provide the number
of attempts at transient recovery k — 1, the percentage of faults that are permanent p, the
percentage of faults that are transient ¢, and, since this model is simulated for solution the
confidence level and percent error desired. The distributions available are constant, k-stage
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Erlang, exponential, gamma, log-normal, normal. Rayleigh, uniform, and Weibull. For more
information on any of these distributions, see reference 18.

This FEHM is the only model that is simulated for solutiomn. During the simulation. a
statistical analysis of the simulation data is performed. The confidence intervals about the exit
probabilities are generated for the R and C exits and are compared with the allowable error.
The S exit data is determined to be S =1 — R — . If the confidence interval is too wide, the
number of trials is increased (by a factor of 2). When the simulation has reached the desired
accuracy, the results are appended to the parameter file. The ESPN simulator uses a random
number generator whose seed is linked to the host system clock. Thus. model state probabilities
change with each new execution of HARP, even when the same input data are used. The user
cannot replicate the results for the following example, which is listed in the appendix, unless the
random number seed is set. (See vol. 1 of this TP.)

For this model, the coverage factor R is the probability of a token reaching the place labeled
“Transient Restoration”; C' is the probability of a token reaching the place labeled “Permanent
Coverage”; and S is the probability of a token reaching the place labeled “Single Point Failure.”
The fourth factor, N is derived from the relative passage time to the three exits, as has been
described previously.

To demonstrate the use of the ESPN model, the three-processor, two-bus system is used.
The FORM input is left to the reader (either as a fault tree or a Markov chain) and the output
files are listed in the appendix. For this example the harpeng program is run four times utilizing
the four different near-coincident fault type options. The results for the four runs are recorded
in the files with extensions .RS1, .RS2, .RS3, and .RS4. Like our first examples, the complete
program runs are listed along with a sample input ESPN model. The ESPN parameter file is
printed twice in appendix A both before and after the solution program is run. The simulation
results obtained during the execution of harpeng are printed directly in the parameter file. In
this way. unless the input parameters change, the simulation is not run again.

8.2.1. tdrive Dialog for ESPN Model

$ tdrive
HARP---Version 7.0, February 1993
NASA Langley Research Center/Duke University
Program Tdrive
Defaults are Invoked by "CR", Inputs are Case Insensitive
Question? ( "?" or "help" )

FAULT TREE (F) or Markov Chain (M)?

> f
Modelname?
> 3p2b

NAME for component ID 1. Enter "/d" or "done" if finished.
> processor

Symbolic failure rate?

> lambda

Component FEHM?
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> espn
FEHM filename?
> espn.fhm
File ESPN.FHM does not currently exist
Create now? (y/n) 7 y
s o oo o sk sk o o o o o o K R R R ok koK koK o ok o Rk o K
* HARP ESPN COVERAGE MODEL *
e e e o s oS ok ook ok ok o SR K K KK R kKoK ok Ko ok oK o K ok
All times are in units of SECONDS
Transition numbers refer to ESPN figure in manual
Active to benign transition distribution? (T3)
Distribution type:
> help
Valid dists are:
uniform
exponential
Weibull
normal
Rayleigh
log Normal
Erlang (k-stage Erlang)
constant value
please try again

Distribution type:

> unif

Lower limit (seconds):
>0

Upper limit (seconds):
> 1

Transient fault lifetime distribution? (T4)
Distribution type:
> exp
lambda (rate parameter, events/second):
> 100

Benign to active tramsition distribution? (T2)
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Distribution type:

> unif

Lower limit (seconds):
>0

Upper limit (seconds):
> .5

Detect transition distribution (self-test)? (T7)

Distribution type:

> unif

Lower limit (seconds):
>0

Upper limit (seconds):
> .4

Fraction of faults detected (d)7?
> .9
Production of errors distribution? (T6)
Distribution type:
> weibull
Scale parameter (rate, events/second):
> 10
Shape parameter? (alpha)
> 2.5
Error propagation or detection distribution? (T9)
Distribution type:
> weib
Scale parameter (rate, events/second):
> 60
Shape parameter? (alpha)
> .25
Fraction of errors detected? (q)
> .9
Transient recovery attempts? (k-1)
> 5
Transient recovery distribution? (T8)

Distribution type:
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> erlang
Rate parameter (events/second):
> 100
Number of stages (positive integer):
> 2
Fraction of isolated detected faults? (1)
> .9
Isolation time distribution? (T13)
Distribution type:
> normal

Mean (seconds):

Standard deviation (seconds):
> 1
Fraction of successful reconfigurations? (r)
> .9
Reconfiguration time distribution? (T14)
Distribution type:
> normal

Mean (seconds):

Standard deviation (seconds):
> .5
Fraction of transient faults? (t)
> .5
Fraction of permanent faults? (p)
> .4
Confidence level? (choose from 60,65,70,75,80,85,90,95,98,
-- suggested value is 95)
> 90
Percent error tolerated in the exit probabilities? (integer value -—-
suggest value between 2 and 5)
> 10
FEHM information for this component is stored in file ESPN.FHM

Continue => Y Reenter => N

46



>y
NAME for component ID 2. Enter "/d" or "done" if finished.
> bus
Symbolic failure rate?
> mu
Component FEHM?
> values
Continue => Y Reenter => N
>y
NAME for component ID 3. Enter "/d" or "done" if finished.
> done
Define interfering component types for near-coincident faults? (Y/N)?
>y
1 PROCESSOR LAMBDA ESPN.FHM
2 BUS MU VALUES
When prompted for each component,enter the number of each dictionary ID
that is an interfering component type.
Separate entries by commas, i.e., 1,2.
Type "ALL" to specify all components.
Type "NONE" to specify no components.
Type "7?" or"HELP" to see the dictionary again.
What components will cause the PROCESSOR to fail
> 2
Fault Tree Description.
Enter "/d" or done" for gate/box entry, ? for dictionmary,
or "/X" to correct input error.
Basic event node 1:
Component ID?
> 1
Replication factor?
>3
Summary: Basic event node 1: 3 of component 1
Continue => Y Reenter => N, (Default = Y)
>y

Enter "/d" or done" for gate/box entry, ? for dictionary,

47



or "/X" to correct inmput error.
Basic event node 2:
Component ID?
> 2
Replication factor?
> 2
Summary: Basic event node  2: 2 of component 2
Continue => Y Reenter => N, (Default = Y)
>y
Enter "/d" or done" for gate/box entry, 7 for dictiomnary,
or "/X" to correct input error.
Basic event node 3:
Component ID?
> done
Enter "/X" to correct input error, ? for help.
Node 3: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> and

Enter number of incoming arcs: * Since replication = 3 *
* was specified, only 1 *

> 1 * arc is given here. *

Enter ID number of source node for arc 1:

> 1 v

SUMMARY: Node 3: TYPE AND ) 1 INPUTS: 1

Continue => Y Reenter => N, (Default = Y)
>y
Enter "/X" to correct input error, ? for help.
Node 4: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> and

Enter number of incoming arcs: * See note directly above *
>1

Enter ID number of source node for arc 1:

> 2

SUMMARY: Node 4: TYPE AND s 1 INPUTS: 2
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Continue => Y Reenter => N, (Default = Y)
>y
Enter "/X" to correct input error, ? for help.
Node 5: Gate or Box or Fbox (Enter "FBOX" as last node)
Enter gate type:
> or

Enter number of incoming arcs:

> 2

Enter ID number of source node for arc 1:

> 3

Enter ID number of source node for arc 2:

> 4

SUMMARY: Node 5: TYPE OR , 2 INPUTS: 3 4

Continue => Y Reenter => N, (Default = Y)
>y
Enter "/X" to correct input error, ? for help.
Node 6: Gate or Box or Fbox (Enter "FBOX" as last node)

Enter gate type:

> fbox

Enter ID number of source node for arc 1:
> 5

Summary: FBOX node 6: INPUT: 5

Continue => Y Reenter => N, (Default = Y)
>y
TRUNCATE the model after how many failures?
>0
Default selected: no truncation.
Include state tuples as comments in .INT file?
>n
Default selected: No state tuple notation.
FT2MC: Converting fault tree to Markov chain
FT2MC: Successful completion
11 internal Markov chain states generated
6 unique nonfailure states
2 failure states generated for HARP engine
Model information in file: 3P2B. INT

Dictionary information in file: 3P2B.DIC
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8.2.2. fiface Dialog for ESPN Model

$ fiface
HARP - Version 7.0, February 1993
Program FIFACE
Modelname?
> 3p2b

Matrix and symbol table information in: 3P2B.MAT

Which near-coincident fault rate files are to be created?

Enter:

N for NONE (ignore near-coincident faults)

A for ALL (all near-coincident faults are fatal)

S for SAMe (only faults of same type interfere)

U for USeR defined interfering component types

You can type combinations like AU, ASU, SA etc. *If more than one multi- *

Combinations of "N" with A, U or S are not allowed.*fault model is required *
*when multiple harpeng  *
*executions are made, *
*specify them here. fifacex*

> asu *will create .ALL,.SAM, *
xor .USR files for harpeng*

Enter probabilities now for component with failure rate MU? (y/n) 7

>y

The upper bounds of C and R and lower bounds of S and N should add to one.

The lower bounds of C and R and upper bounds of S and N should add to one.

Also the nominal values of C, N, R, S should add to 1.

Probability of C2 7

> .5

Variation?

>0

Probability of R2 7

> .3

Variation?

>0

Probability of S2 7

> .2

Variation?

>0

Probability of N calculated to be: 0.000000

Variation of N calculated to be: 0.000000
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8.2.3. harpeng Dialog for ESPN Model

$ harpeng

-~ The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 ——------~———o
—————————————— February 1993 --------——oeu—_
Use an echo file from a previous run as the input file? y/n ?
> no
Modelname 7
> 3p2b

Output files:

3P2B.RS1 - Reliability and state probabilities
3P2B.PT1 -~ Graphics information

————— WORKING -----
3P2B.INP -~ Input file or echo of input

Choose the near-coincident fault rate to be used

for the coverage factor calculations.

1: NONE (ignore near-coincident faults).

2: ALL-inclusive (all near-coincident faults are fatal)

3: SAMe-component (only faults of same type interfere).

4: Interfering component types (USeR-defined types).
> 1

Declare meaning for symbol LAMBDA ¢ "?" or "help" )
> 1

For constant failure rate: LAMBDA

Nominal value?

> .be-2

(+/-) Variation? (Must be less than nominal. "?" will allow reentry. )
>0

Declare meaning for symbol MU ( "?" or "help" )
>1

For constant failure rate: MU
Nominal value?
> .be-1

(+/-) Variation? (Must be less than nominal. "?" will allow reentry. )
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>0
Redefine symbol(s) meanings or their values, or correct an error (y/n)7?
>n
Mission time? (Hours):
> 10
Mission time reporting interval? (Hours):
> 10
Compute Parametric Bounds using SIMPLE Model? (y/n) ? n
Simulating ESPN Fault/Error Handling Model ...
Calculating State Probabilities...
1 Reports from the GERK ODE solver.

Please select:

1: Scroll through the result file?

2. Solve same model with new mission time or near-coincident fault rates, etc.?
3: Redefine symbol(s) meaning(s) and re-run model?

4: Exit the program?
> 2

Choose the near-coincident fault rate to be used

for the coverage factor calculations.

1: NONE (ignore near-coincident faults).

2: ALL-inclusive (all near-coincident faults are fatal)
3: SAMe-component (only faults of same type interfere) .
4: Interfering component types (USeR-defined types).

> 2

Redefine symbol(s) meanings or their values, or correct an error (y/n)?
>n

Mission time? (Hours):
> 10

Mission time reporting interval? (Hours):

> 10

Compute Parametric Bounds using SIMPLE Model? (y/n) 7 n
Calculating State Probabilities...

1 Reports from the GERK ODE solver.
Please select:

1: Scroll through the result file?
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2: Solve same model with new mission time or near-coincident fault rates, etc.?

3:
4:

> 2

Redefine symbol(s) meaning(s) and re-run model?

Exit the program?

Choose the near-coincident fault rate to be used

for the coverage factor calculations.

1:

2
3:
4

>3

Red

>n

Mis

> 10

>

Mis
10

Com

NONE (ignore near-coincident faults).

: ALL-inclusive (all near-coincident faults are fatal)

SAMe-component (only faults of same type interfere).

Interfering component types (USeR-defined types).

efine symbol(s) meanings or their values, or correct an error (y/n)?

sion time? (Hours):

sion time reporting interval? (Hours):

pute Parametric Bounds using SIMPLE Model? (y/n) ? n

Calculating State Probabilities...

>

>

>

Ple
1:

»wN

2
Cho
for

1:
2
3:
4
4

Red

n

0 Reports from the GERK ODE solver.
ase select:
Scroll through the result file?
Solve same model with new mission time or near-coincident fault rates, etc.?

Redefine symbol(s) meaning(s) and re-run model?

: Exit the program?

ose the near-coincident fault rate to be used
the coverage factor calculations.

NONE (ignore near-coincident faults).

: ALL-inclusive (all near-coincident faults are fatal)

SAMe-component (only faults of same type interfere).

Interfering component types (USeR-defined types).

efine symbol(s) meanings or their values, or correct an error (y/n)?
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Mission time? (Hours):
> 10
Mission time reporting interval? (Hours):
> 10
Compute Parametric Bounds using SIMPLE Model? (y/m) 7 n
Calculating State Probabilities...
) Reports from the GERK ODE solver.
Please select:

1: Scroll through the result file?

2: Solve same model with new mission time or near-coincident fault rates, etc.?
3: Redefine symbol(s) meaning(s) and re-run model?

4: Exit the program?

> 4
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Chapter 9

Incorporation of Near-Coincident
Faults

9.1. Overview

HARP is designed with the capability to model highly reliable systems. To appropriately do
so, the possibility of modeling the effects of near-coincident faults is included. A near-coincident
fault is onc that occurs before the coverage model has recovered from a single fault. How
disastrous the results are depends upon how the user chooses to interpret the effects of the
near-coincident fault. Typically, the user models the effect of a near-coincident fault as a system
failure. This conservative assumption is often used to eliminate the user burden of acquiring
hard-to-get data and to simplify the model. HARP offers a number of multifault models to cover

“the near-coincident fault effect, that is, system failure.

The FEHM's are specified in the same manner as before, supplying the C, S, and R exit
probabilities. Until now, these exit probabilities have been obtained with no time limit on the
recovery procedure. However, if a second fault occurs before reaching an exit then we are faced
with the problem of two existing faults. Because the second fault can crash the system, we
ideally want the FEHM (coverage model) to exit before the second, near-coincident fault occurs:
however, for highly reliable systems, the probability of a second fault occurring in the recovery
interval is often a significant portion of the total system failure probability. The near-coincident
fault model allows the user to account for pairs of faults that are likely to cause total system
failure.

When these models were being developed over a decade ago, the developers believed that a
more complex model allowing more than two near-coincident faults would be of little practical
use and would not justify the additional computational burden for the aircraft flight control
application. As electronic devices became more reliable during that decade and continue to
do so, the developers’ assumption proved correct. Most commercial and military aircraft flight
control systems and most existing systems in commercial use today can be effectively modeled
when the near-coincident fault is a mission critical factor. Systems using computers can have up
to four reconfigurable processing units where a majority vote can be effected until two coexisting
faults occur. When systems incorporate more than four voting processors and the near-coincident
fault is a significant factor, the HARP multifault models produce a conservative approximation
that becomes more conservative as the number of processors increases.

During that same decade, electronic microcomputers have also become more computationally
powerful and cost has dropped significantly, ushering in the development of distributed comput-
ers. The commercial transport industry’s interest is shifting away from the task of creating
-highly reliable systems (now achievable) toward highly available distributed systems to reduce
maintenance costs and to garner greater computational resources. Such systems may need to
tolerate more than two near-coincident faults, and the automatic HARP near-coincident model
may become too conservative. Two options are available. The user can edit the HARP generated
ASCII files to correct the next fault rates to the exact ones in files * ALL, *SAM. or * USR
(as appropriate), and if necessary, edit the * MAT files to add additional state transitions as
necessary. An exact Markov chain model can be obtained in this manner. An alternative is to
use the extended behavioral decomposition multifault model implemented in X-Window System
HARP (XHARP) (ref. 5). Volume 1 of this Technical Paper provides more details.
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Transient Permanent
Restoration Coverage
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Near-Coincident  Single-Point
Fault Failure Failure

Figure 19. Structure of HARP FEHM.

The coverage model is still solved in isolation; not only the probability of reaching the R, C,
and S exits but also the time to reach each exit are calculated. If we know (probabilistically) when
a near-coincident fault occurs and also the time to reach the R, C, and S exits, we can determine
whether one of these exits is reached before the near-coincident fault. A fourth exit N is added to
the coverage model leading to a new failure state labeled FNCF (failure near-coincident fault).
(Sce fig. 19.) The probabilities , ¢, and s are now adjusted since the exits must be reached
before a certain time. Therefore, N = (1 — C — R — S). (See vol. 1 of this TP for the derivation
of C, R, and S.)

Again, we automatically incorporate the possibility of imperfect coverage into the perfect
coverage Markov chain, as subsequently shown in our three-processor example. Unlike the
previous figures of the three-processor system, the FEHM s here have four exits. Note, too, that
the exit probabilities are now distinct for FEHM 1 and FEHM 2 (fig. 20) because the next fault
rates are state dependent.
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Figure 20. Three-processor system showing FEHM's with C, S, R, and N exit probabilities.
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While in the coverage model denoted by FEHM 1, a second processor fault is possible with
rate 2+ . Therefore, one of the exits, R, C, or S must be reached before time to the second fault
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{which is an exponentially distributed random variable with parameter 2x\) if a near-coincident
fault is to be avoided. Likewise, while in the coverage model denoted by FEHM 2. another
processor failure can occur with rate \.

Assume that FEHM 1 and FEHM 2 in figure 20 are exponentially distributed delays with
rate 6 (see fig. 21). Thus, s = r = (. Note that in the absence of a near-coincident fault, ¢ = 1.
However, with the near-coincident fault occurring at the rate 2 x A from FEHM 1. the probability
of a successful C exit before the occurrence of a second near-coincident fault is easily shown to

- _®
be es = 5oy

Figure 21. Three-processor system showing near-coincident faults.

Similarly for FEHM 2, ¢y = 3% The instantaneous jump model is shown in figure 21.

Bx A=y 6\2*/\*('3 m A v@
G )

2% N *xny

Figure 22. Instantancous jump model of three-processor system with near-coincident faults.

In figure 22, n3 =1 —c3 and nyp = 1 — ¢2. Thus, the inclusion of near-coincident faults causes
the coverage values to become state dependent. The HARP program automatically derives the
coverage factors by taking the Laplace transform of the time-to-exit distributions. We compute
the transforms for the single fault model and then substitute the second near-coincident fault
rate for the Laplace transform variable to obtain the state-dependent coverage values. If the
time-to-exit distribution is not available in closed form, a Taylor series expansion of the Laplace
transform yields an expression that depends on powers of the next fault rate and on the moments
of the distribution. These moments are easily obtained from empirical or simulation data. Sec
reference 6 for the mathematical derivations.

We need not restrict ourselves to single-state FEHM’s. Let us again look at a portion of
the CARE III coverage model that was introduced in chapter 4 on permanent faults. While
essentially the same model as figure 13, the instantaneous transition labeled P4 in figure 13
is now an instantancous transition out of the FEHM. (See fig. 23.) We have also added the
near-coincident fault rates.
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BEPY

Figure 23. Permanent CARE II1 FEHM with N, C, and S exits.

Now the FEHM probabilities, when replaced by a branch point are

4 P qe 6 p qe
C3:(5 + co = +
+p+2A §+p+22/\e+ 2 b+p+ A S+p+A/\e+ A

o p A-ge  _ p (1 —q)e
ST\6+p+2r) e+2) 27 \6+p+tr) e+ A

As before, these probabilities are determined by the HARP program based on the user inputs
for the rates and probabilities in the model.

9.2. Near-Coincident Fault Options

and

As discussed in volume 1 of this Technical Paper, the HARP user has three options (three
multifault models) for modeling near-coincident faults. To better demonstrate the various
options allowed in HARP, the following Markov model is utilized. In this example, we show
that the reduced model after each FEHM has been reduced to a branch point. The arcs entering
the FNCF (not shown) are part of the inherent structure of the model. For each C*, there is a
corresponding N* into the FNCF state.

9.2.1. ALL-Inclusive Near-Coincident Multifault Model

This specification for the interfering fault assumes that a second near-coincident fault
anywhere in the system (while attempting to handle a first fault) causes immediate system failure
(via the FNCF state). The use of this model always gives a conservative result for practical
systems of interest. Volume 1 chapter 7 of this Technical Paper presents an example system
where the ALL model is specified for a system that has nearly independent fault containment
regions. Under certain conditions, the degree of conservative error can be quantified by using
HARP’s simple lower bound (see vol. 1 of this TP). Another alternative is to modify the HARP
generated ASCII files (*.ALL, *.SAM, *.USR and perhaps the * MAT in some cases) with a text
editor for specifying the exact next fault rate(s). When fault rates are specified correctly, an
accurate result can be obtained. The simple bounds also become valid for all Markovian models
and can be used to gauge the results. Using XHARP (ref. 15) is another alternative.
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Given the Markov chain of figure 24, for the arc labeled with a “C1”, the next fault rate
is DAL 43Xy + 2X3. This rate is found by looking at the target state (state 2) and taking the
maximum of the sum of the incoming ares minus 1.0 for this component type (A1) and the sum
of the same component type parameters exiting the state. In addition, the maximum between
the incoming and outgoing ares for every other component type in the dictionary is added to
the rate. (However, the dictionary must be complete for a correct rate.) For this system, the all
inclusive rate file appears as follows. (Note. the expression following cach 7 is the next fault
rate corresponding to the C' transition and is not the coverage value.)

A« (2
6y ('] > DAL * Oh Ay = (76 3A x O7 Ay
3o x O3

2/\;5 * ("4

Figure 24. System model for example 1.

FIGURE 24 .ALL file
C1
5*LAMBDA1+3*LAMBDA2+2%LAMBDA3;
C2
5*LAMBDA1+3*xLAMBDA2+2*LAMBDA3;
C3
5*LAMBDA1+2+LAMBDA2+2%LAMBDA3;
C4
5*LAMBDA1+3*LAMBDA2+LAMBDA3;
C5
4*LLAMBDA1;
C6
3*LAMBDA1;
c7
2*xLAMBDA1;

9.2.2. SAME-Type Near-Coincident Multifault Model

More optimistically, the user can assume that only near-coincident faults of the same
component type cause system failure (while attempting to handle a first fault). For the FEHM
associated with C1 in figure 24, only those components that fail with rate A cause system
failure. The same type files appears as follows:

FIGURE 24 .SAM file
C1

5*LAMBDAL;
c2
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5+xLAMBDA1;
c3

2*xLAMBDA2;
ca

LAMBDA3;
C5

4*LAMBDA1;
Cc6

3*xLAMBDAL;
c7

2*LAMBDA1;

9.2.3. USER-Defined Near-Coincident Multifault Model

For some models, the user can define explicitly for each component, which components (itself
and/or others) can interfere with fault recovery. Thus, the next fault rate for the FEHM’s
between operational states depends on user input. Let us refer to those components with
rate A\] as processorl, Ag as processorz, and A3 as processor3. For this example, the user can
specify that all three processors interfere with recovery in the processorl components, but only
processor2 affects recovery in processor2 and only processord interferes with its own recovery.
While processorl can be modeled with the all-inclusive fault type and processor2 and processor3
with the same-type next fault rate, only one near-coincident fault rate type can be specified for
the entire model. This file appears as follows:

FIGURE 24 .USR file
C1
5*L.AMBDA1+3*LAMBDA2+2+LAMBDA3;
C2
5*LAMBDA1+3+*LAMBDA2+2%LAMBDA3;
C3
2*xLAMBDA2;
C4
LAMBDA3;
Ct
4*LAMBDA1;
C6
3*LAMBDA1L;
c7

2*LAMBDA1;
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9.2.4. Example for .ALL and .SAM Options

Now let A9 = A{, allowing the user the ability to utilize an overriding FEHM file option. We
now remove the A3 arc for simplicity. (See fig. 25.)

3/\1 * (12
62, + C1 m 5A, * 04/\4,\, «CB 3AL » C6 A
mOW OO Or O
3, + C3

Figure 25. System model for example 2.

For this system, the all inclusive rates are the same as the same type rates.
C1
6*LAMBDA1;
Cc2
5*LAMBDA1 ;
C3
5xLAMBDA1 ;
o2:
4xLAMBDA1;
Ch5
3*LAMBDA1 ;
Cé
2*LAMBDA1 ;

9.2.5. No Near-Coincident Faults

If the user chooses, near-coincident faults can be ignored. As a result, the probability of
being in state FNCF is zero.

9.3. Specification of Near-Coincident Fault Rates

The user need not worry about the actual near-coincident fault rates in HARP. While running
the engine program (harpeng), the user is asked which near-coincident fault rate to use. Once one
of the four options is chosen (ALL-inclusive, SAME-type, USER-defined, NONE), the program
automatically determines the correct next fault rate. When no coverage models were specified
in the tdrive program or no near-coincident faults were specified in the fiface program, the user
1s not asked about near-coincident faults in harpeng.
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Chapter 10

Error Bounds

This section addresses the question posed by the engine pertaining to running bounds. In
general, the tdrive and fiface programs process a system model using failure rates that are
symbolic rather than numeric (of course, numeric values can be entered in the Markov chain in
tdrive if desired). The user binds the numeric values to the symbolic rates during the execution
of harpeng. Because many input parameters to the FORM model are not known exactly (i.e.,
coverage values from simulation are given as confidence intervals and the user may only know a
range of values for the failure rates), HARP enables the user to specify the rates as a nominal
value plus or minus a variation.

Two different kinds of bounds are provided by the HARP program, simple model (parametric)
bounds and model truncation bounds. Depending on the system being modeled, none, one, or
both kinds of bounds may be applicable.

The simple parametric bounds are computed for two distinct classes of models: The AS IS
model that does not use any FEHM’s and does not invoke behavioral decomposition, and those
models that do invoke FEHM’s and behavioral decomposition. Both model classes can also be
modified to reflect the model state reduction technique called truncation. (See vol. 1 of this TP.)

The AS IS model is used strictly for parametric analysis that reports the effect of system
unreliability as a function of the user-specified parametric variation. These data are useful for
sensitivity analyses. The simple parametric bounds for this model class are true bounds for the
original user-specified model. (See vol. 1 of this TP.)

When FEHM’s and behavioral decomposition are invoked, the simple bounds take on two
manifestations. When no parametric variation is specified and the user selects the simple bounds
computation (prompted by HARP), simple upper and lower bounds are computed based on
estimated maximum and minimum imperfect coverage and lack of sufficient redundancy. If in
addition, parametric variation is specified, a combined effect is estimated, that is, imperfect
coverage with insufficient redundancy and parametric variation. Unlike the AS IS model, the
simple lower bound associated with behavioral decomposition is a conditional bound. When
many fault contailnent regions are modeled, the lower bound may not bound the full model
unreliability but will bound the HARP instantaneous jump model unreliability. (See vol. 1 of
this TP.)

HARP does not allow bounds to be evaluated when any failure rate is Weibull. When the
system being modeled has repair, bounds are evaluated only when an absorbing state is present
in the model.

10.1. Simple Model (Parametric) Bounds

10.1.1. AS IS Model

Because many input parameters to the FORM model are not known exactly (e.g., the user
may only know a range of values for the failure rates), HARP allows the FORM input parameters
to be expressed in terms of ranges of values rather than point estimates. HARP produces upper
and lower bounds on the system unreliability that are a function of these ranges of values. The
model evaluates the overall system failure probability by taking the lower bound on the failure
rates and the upper bound on the repair rates as the best case and by taking the upper bound
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on the failure rates and the lower bound on the repair rates as the worst case. The model also
produces the predicted unreliability based on the nominal values. The simple parametric bounds
for this model class are bounds for the original user-specified model.

10.1.2. Models With Behavioral Decomposition

We approach the analysis of errors by decomposing the original model into two simpler models
that can be combined to obtain a conservative unreliability estimate (refs. 19 to 21). The general
form of the simple bounds is given as:

P (A U B) < min[1, P(Apign) + P(Bmax)]

P(AU B> 2 ma‘x[P(Alow)v P(Bmin)]
The first rule gives the conservative bound, and the second rule gives the optimistic bound!?.

The first expression gives the upper unreliability bound, and the second gives the lower
unreliability bound. P(A) is the system failure probability caused by the lack of sufficient
redundancy. P(Apign) and P(A,) are used instead of P(A) when parametric tolerance is
selected to cause P(A) to be maximum to get P(Apign) and to cause P(A) to be minimum to
get P(Ajoy). P(B) is the probability of system failure due to imperfect coverage. When FEHM’s
are specified for behavioral decomposition, P(B) is computed for the minimum imperfect
coverage to get P(Bp,;;) and the maximum imperfect coverage to get P(Bmax). P(A) is further
modified when transients are specified in at least one FEHM. The perfect redundancy model
(coverage assumed to be perfect) transition rates are modified by coefficients that reflect transient
restoration probabilities. The net effect is to reduce the probability of failure by redundancy
exhaustion since transient restoration occurs.

The simple bounds computed by HARP are the bounds on the instantaneous coverage model
(see vol. 1 of this TP) that produces the unreliability result and also bounds the user’s full
model under certain conditions: The simple upper bound on the system unreliability is always a
true bound with respect to both the instantancous coverage model and the user-specified model
(provided all failure rates are constant).!!

The validity of the optimistic lower bound with respect to the user-specified model is
dependent on the use of large numbers of fault containment regions that require the ALL
multifault model (see chapters 1 and 7 of this TP for details).

The HARP simple bounds are used for preliminary estimates of unreliability. They are
provided as a quick-look computation that can be used in the carly stages of system design
when only ranges of parameter values are available. The essence of HARP output is the nominal
result (instantaneous jump model unreliability) and not the simple bounds. If the model is solved
AS IS, without any FEHM’s or with the VALUES FEHM, the HARP bounds are true bounds
for the user-specified full model. With FEHM'’s, the upper bound is always a true bound, and
the lower bound is also a true bound except possibly for a limited class of systems with many
fault containment regions.

10 Validity of these bounds is subject to the correct specification of multifault models, where applicable (see vol. 1 of this
TP).

I HARP FEHM's and multifault models ouly support single recovery transitions. System models with multiple recovery
transitions can cause the simple upper bound to improperly bound the HARP unreliability result or the full model. For
such systems, the user can edit HARP-generated ASCII files with a text editor to specify the correct model. In this case.
the bounds will be valid. XHARP provides another modeling alternative. The HARP AS IS model can also be used to
provide accurate results.
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10.2. Truncation Bounds

Truncation bounds are obtained as follows. When the truncated model is solved, the
probability of being in each of the TA states is calculated. By adding these probabilities to
that of the DOWN (failed) states (DS) before the truncation line, we get an upper bound on
the system unreliability (SU). This result assumes that all states beyond the truncation line are
failed states. To get a lower bound on unreliability, we add only the probabilities of the failure
states before the truncation line. In this case, the TA states are automatically considered to be
functional states by HARP. To use some notation, the states in the truncated model are denoted
with a subscript tr and the states in the full model have the subscript full. The bounds on the
system unreliability are given by the following equation:

Pr(DSy) < SUgay < Pr(TAu)+ Pr(DSu)

HARP not only gives the system unreliability but also provides a breakdown in terms of
individual failure probabilities. Failure causes are the exhaustion of different components, FNCF
and FSPF. In a truncated model, HARP gives bounds on the system unreliability as well as
individual failure probabilities. F1 denotes a state where fewer than the minimum required of
component type 1 are still operational. If there is an F1 state before the truncation level, we
use the probability of being in the F1 state as a lower bound on the probability of failure due
to exhaustion of component 1. All transitions due to failure of component 1 that fall on the
truncation line and do not lead to state F'1 are directed into a state called TA1.

Probability of failure due to exhaustion of component 1, Pr(F1gy), is bounded as follows:
Pr(Fly) < Pr(Flgn) < Pr(TAlg)+ Pr(F1g)

The bounds on the probability of exhaustion of other components are obtained in a similar
manner. Now we obtain bounds for the probability of a near-coincident fault and a single-point
fault.

The probability of being in the FNCF state before the truncation level is a lower bound on
the FNCF probability. The upper bound is taken to be this lower bound probability added to
the combined probability of all TA states:

Pr(FNCFy) < Pr(FNCFy) < Pr(T Ay)+ Pr(FNCFy)

The bounds on probability of single-point fault are obtained in a similar manner as given as
follows:

PT‘(FSPFtr) < P’I‘(FSPFqu)S PT‘(TAtr)—F PT‘(FSPFtr)

10.3. Combined Bounds

When parametric bounds (via a simple model) are desired from a truncated model, the bounds
are combined in the following way. The simple model solution uses the optimistic parameters
(lowest possible failure rates, highest possible repair rates and coverage factors) to produce an
upper bound on the reliability of the system (ref. 20).

Rhigh(t) =1- ma‘x[Peshlow(t)a Peoviow (t)]

If the model from which the simple bounds are derived is a truncated model, then the
TA states are taken to be operational states (for the optimistic bound). Likewise, the simple
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model solution uses the pessimistic parameters (highest possible failure rates, lowest possible
coverage factors and repair rates) to produce a lower bound on the unreliability of the svstem
(ref. 20).

Rlow(f) =1 - min [Posllhig}l(f)+ P(‘()\'hig;h(”« 1}

If the model from which the simple model bounds are derived is a truncated model, then the
TA states are taken to be failure states (for the pessimistic bounds). The first type of bounds are
reported as “simple model bounds,” the second type are reported as “truncated model bounds.”
and the combined bounds are reported as “truncated simple model bounds.”

The use of behavioral decomposition and instantancous coverage factors have been proven to
result in conservative estimates of reliability (ref. 22), when failure rates are constant, (exponential
times to failure). Both bounding techniques (simple and truncation) produce bounds on this
conservative estimate of reliability. For the class of practical highly reliable systems., the HARP
(simple and truncation) bounds also encompass the reliability of the original model.

If a model is extremely large and cannot fit in the cngine data structure simultaneously. the
bounds are disallowed. Also, if a model has Weibull failure rates or no absorbing states, bounds
are not asked for nor provided.

NASA Langley Research Center
Hampton, VA 23681-0001
June 15, 1994
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Appendix A
File Listings of HARP Examples

Al. Example 3PFT1

Example 3PFT1 presents a model of a three processor (triplex) system that was input as a
fault tree. Each component is specified as a unique basic event. (See section 3.1.)

File 3PFT1.DIC gives the ontput from program tdrive.
1 PROCESSOR1 LAMBDA1 NONE
INTERFERING COMPONENT TYPES:
2 PROCESS0R2 LAMBDA2 NONE
INTERFERING COMPONENT TYPES:
3 PROCESSOR3 LAMBDA3 NONE
INTERFERING COMPONENT TYPES:
FEIDS
10 9 8

File 3SPFT1.INT gives the output from program tdrive.

SORTED

1 2 LAMBDA1;

1 3 LAMBDA2;

1 4 LAMBDA3;

2 5 LAMBDA2;

2 6 LAMBDA3;

3 5 LAMBDA1;

3 7 LAMBDA3;

4 6 LAMBDA1;

4 7 LAMBDA2;

5 8 LAMBDA3*X;
6 9 LAMBDA2*X;
7 10 LAMBDA1*X;

File 3PFT1.MAT gives the output from program fiface.

10

2, 1
LAMBDA1;
3 , 1
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LAMBDA2;
4 , 1
LAMBDAS;
5 , 2
LAMBDA2;
5 , 3
LAMBDA1;
6 , 2
LAMBDAS3;
6 , 4
LAMBDA1;
7 , 3
LAMBDA3;
7 , 4
LAMBDA2;

8 , b5
LAMBDA3*X;
9 , 6
LAMBDA2x*X;
10 , 7
LAMBDA1*X;

0,0
File 3SPFT1.SYM gives the output from program fiface.
X
999
END SYMBOL DEFINITION
F1
1010
F2
1009
F3
1008

END FAILURE STATE DEFINITION
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File 3PFT1.RS1 gives the output from program harpeng.

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 —=--—-—=-—--——-
——————————————— February 1993 --——--—-—=-=====~
Modelname:
3PFT1
Input description (from dictionary file):
Component type: 1 Name: PROCESSOR1
Symbolic failure rate:
LAMBDA1 Constant failure rate:
0.10000000D-02 +/- 0.00000000D+00
FEHM file name: NONE
Component type: 2 Name: PROCESSOR2
Symbolic failure rate:
LAMBDA2 Constant failure rate:
0.10000000D-02 +/- 0.00000000D+00
FEHM file name: NONE
Component type: 3 Name: PROCESSOR3
Symbolic failure rate:
LAMBDA3 Constant failure rate:
0.10000000D-02 +/- 0.00000000D+00
FEHM file name: NONE
NO near-coincident faults considered.
Time(in Hours): 0.100D+02
State Probabilities
State name: F1 0.32837475D-06
State name: F2 0.32837475D-06
State name: F3 0.32837475D-06

Reliability = 0.99999901D+00

"

Unreliability 0.98512425D-06

Total failure by redundancy exhaustion 0.98512425D-06

GERK ODE solver: global error value .107D-16

o O

relative error value .100D-08
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See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.

A2, Example 3PFT2

Example 3PFT2 is identical to the previous one except that a replication factor of three is
specified for the basic events to aggregate the unique basic events into one basic event. (See
section 3.2.)

File 3PFT2.DIC gives the output from program tdrive.
1 PROCESSQR LAMBDA NONE
INTERFERING COMPONENT TYPES:
FEIDS
4

File 3PFT2.INT gives the output from program tdrive.

SORTED
1 2 3*LAMBDA;
2 3 2*LAMBDA;
3 4 LAMBDA*X;

File 3PFT2.MAT gives the output from program fiface.
4
2 , 1
3*LAMBDA;
3 , 2
2*LAMBDA ;
4 , 3
LAMBDAx*X;
0,0
File 3PFT2.SYM gives the output from program fiface.
X
999
END SYMBOL DEFINITIGON
F1
1004

END FAILURE STATE DEFINITION
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File 3PFT2.RS1 gives the output from program harpeng.

M

Example 3PMC is the same system model as previously displayed, but it is entered as a

odelname:

3PFT2

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 -———--—====——

——————————————— February 1993 —-----——-=--==—=-

Input description (from dictionary file):

Component type:

1 Name: PROCESSOR

Symbolic failure rate:

LAMBDA

FEHM file name:

Constant failure rate:

0.10000000D-02 +/- 0.00000000D+00

NONE

NO near-coincident faults considered.

Time(in Hours):

0.100D+02

State Probabilities

State name: F1

0.98512425D-06

Reliability =  0.99999901D+00
Unreliability = 0.98512425D-06
Total failure by redundancy exhaustion = 0.98512425D-06

GERK ODE solver: global error value 0.716D-17

relative error value 0.100D-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.

A3. Example 3PMC

Markov chain directly in licu of a fault tree. (Sec section 3.3)

File 3PMC.DIC gives the output from program tdrive.

-1 ASIS

File 3PMC.INT gives the output from program tdrive.

UNSORTED

3 2 3xLAMBDA;
2 1 2xLAMBDA;
1 F1 LAMBDA;
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File 3PMC.MAT gives the output from program fiface.

4

2 , 1
3*LAMBDA ;
3 , 2
2*xLAMBDA;
4 , 3
LAMBDA*X;
0,0

File 3PMC.SYM gives the output from program fiface.

X
999
END SYMBOL DEFINITION
F1
1004
END FAILURE STATE DEFINITION

File 3PMC.RS1 gives the output from program harpenyg.

- The Hybrid Automated Reliability Predictor -

———————————— Release Version 7.0 ---—--——------

——————————————— February 1993

Modelname:
3PMC

Symbolic values:

Symbolic failure rate:

LAMBDA Constant failure rate:

0.10000000D-02 +/-

NO near-coincident faults considered.
Time(in Hours): 0.100D+02

State Probabilities

0.00000000D+00

State name: F1 0.98512425D-06
Reliability =  0.99999901D+00
Unreliability = 0.98512425D-06

Total failure by redundancy exhaustion =
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GERK ODE solver: global error value 0.716D-17
relative error value 0.100D-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.
A4. Example 3PCARE1

These files are for the replicated triplex processor system with a CARE FEHM specified for
permanent faults. (See section 6.)

FILE 3PCAREL.DIC output from program tdrive.
1 PROCESSOR LAMBDA CARE1.FHM
INTERFERING COMPONENT TYPES:
FEIDS
4
File 3PCAREL.INT gives the output from program tdrive.
SORTED
1 2 3*LAMBDA;
2 3 2*LAMBDA;
3 4 LAMBDA*X;
FEHM FILE CARE1.FHM
CARE.SINGLE.FAULT.MODEL
PROBABILITY OF PERMANENT: 0.10000000d4+01
PROBABILITY OF INTERMITTENT: 0.00000000d+00
PROBABILITY OF TRANSIENT: 0.000000004+00
PERMANLNT MODEL PARAMETERS
DELTA: 0.360000004+03
EPSILON: 0.36000000d+04
RHO: 0.18000000d+03
PA: 0.10000000d4+01
Q: 0.99900000d4+00
File 3PCARE1.MAT gives the output from program fiface.
5
2 , 1
3+«LAMBDA*C1;
3, 2
2*xLAMBDA*C1;
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4 , 3
LAMBDA*X;
5 , 1
3*LAMBDAxS1;
5 , 2
2*xLAMBDA*S1;
0,0
File SPCARE1.SYM gives the output from program fiface.
C1
3
CARE1 .FHM
X
999
END SYMBOL DEFINITION
F1
1004
FSPF
1005
END FAILURE STATE DEFINITION

File SPCAREL.RSI1 gives the output from program harpeng.

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 --~-————-———-
——————————————— February 1993 -----------———--
Modelname:
3PCARE1
Input description (from dictionary file):
Component type: 1 Name: PROCESSOR
Symbolic failure rate:
LAMBDA Constant failure rate:
0.10000000D-02 +/- 0.00000000D+00
FEHM file name: CARE1.FHM
For this FEHM model, the exit probabilities are:
(in the absence of near-coincident faults)

Transient restoration: 0.00000000D+00
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Permanent coverage: 0.99966667D+00
Single-point failure: 0.33333333D-03
NO near-coincident faults considered.
Time (in Hours): 0.100D+02
State Probabilities
State name: F1 0.98446761D-06
State name: FSPF 0.99498051D-05

Reliability =  0.99998907D+00

Unreliability 0.10934273D-04

Total failure by redundancy exhaustion =  0.98446761D-06

GERK ODE solver: global error value 0.107D-16
relative error value 0.100D-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.

A5. Example 3SPARIES
These files are for the replicated triplex processor system with an ARIES FEHM specified.
(See section 6.2).
FEHM file ARIES.FHM
ARIES.TRANSIENT.RECOVERY.MODEL
PROBABILITY THAT FAULT IS TRANSIENT 0.900000004+00
MEAN DURATION OF TRANSIENT FAULT 0.50000000d-02
PROBABII.ITY THAT FAULT IS CATASTROPHIC 0.10000000d-02
NUMBER OF TRANSIENT RECOVERY PHASES 3
PHASE 1 DURATION: ©.80000000d+00 EFFECTIVENESS: 0.80000000d4+00
PHASE 2 DURATION: 0.20000000d+00 EFFECTIVENESS: 0.70000000d4+00
PHASE 3 DURATION: 0.100000004+00 EFFECTIVENESS: 0.50000000d4+00
FAILURE RATE OF RECOVERY SYSTEM HARDWARE: .00000000D+00
COVERAGE OF PERMANENT FAULT: 0.85000000d+00

File 3PARIES.RS1 gives the output from program harpeng.

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 --——~--—--—--
——————————————— February 1993 -----—----------

Modelname:
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3PARIESI1
Input description (from dictionary file):
Component type: 1 Name: PROCESSOR
Symbolic failure rate:
LAMBDA Constant failure rate:

0.10000000D-02 +/- 0.00000000D+00

FEHM file name: ARIES.FHM

For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration: 0.76423498D+00
Permanent coverage: 0.199559027D+00
Single-point failure: 0.36214753D-01

NO near-coincident faults considered.
Time(in Hours): 0.100D+02

State Probabilities

State name: F1 0.99891519D+00
State name: FSPF 0.10848086D-02

Reliability = 0.99891519D+00

Unreliability 0.10848086D-02

Total failure by redundancy exhaustion = 0.39604048D-07

GERK ODE solver: global error value 0.280D-19 {Depend on computing}
relative error value 0.100D-08 {platform}

See Users Guide, section 3.3 for interpretation.
0 Reports from the GERK ODE solver.
A6. Example SPCARE2
These files are for the triplex processor system using the CARE FEHM with transient faults.
(See section 6.4.)
FEHM FILE CARE2.FHM
CARE.SINGLE.FAULT.MODEL
PROBABILITY OF PERMANENT: 0.00000000d+00
PROBABILITY OF INTERMITTENT: 0.00000000d+00
PROBABILITY OF TRANSIENT: 0.10000000d4+01
TRANSIENT MODEL PARAMETERS
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ALPHA: 0.36000000d4+05
DELTA: 0.360000004+03
EPSILON: 0.360000004+04
RHO: 0.18000000d+03
PA: 0.50000000d4+00
PB: 0.50000000d+00
Q: 0.90000000d+00
File 3PCARE2.RS1 gives the output from program harpeng.

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 ——-—-———==---
——————————————— February 1993 --———------————~
Modelname:
3PCARE2
Input description (from dictionary file):
Component type: 1 Name: PROCESSOR
Symbolic failure rate:
LAMBDA Constant failure rate:
0.10000000D-02 +/- 0.00000000D+00
FEHM file name: CARE2.FHM
For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration: 0.99232518D+00
Permanent coverage: 0.71796719D-02
Single-point failure: 0.49514978D-03

NO near-coincident faults considered.
Time(in Hours): 0.100D+02

State Probabilities

(@]

State name: F1 .51414141D-10

(@)

State name: FSPF .14853850D-04

Reliability 0.99998515D+00
Unreliability =  0.14853901D-04
Total failure by redundancy exhaustion = 0.51414141D-10

GERK ODE solver: global error value 0.358D-17
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relative error value 0.100D-08
See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.
A7. Example 3PCARES3

These files are for the triplex processor using the CARE FEHM with intermittent faults. (See
section 7.)

FEHM file CARE3.FHM

CARE.SINGLE.FAULT.MODEL

PROBABILITY OF PERMANENT: 0.20000000d+00

PROBABILITY OF INTERMITTENT: 0.20000000d+00
PROBABILITY OF TRANSIENT: 0.60000000d+00
PERMANENT MODEL PARAMETERS

DELTA: 0.30000000d+03

EPSILON: 0.36000000d4+04

RHO: 0.240000004+03

PA: 0.10000000d4+01

Q: 0.99900000d4+00
INTERMITTENT MODEL PARAMETERS

ALPHA: 0.210000004+04

BETA: 0.300000004+04

DELTA: 0.360000004+03

EPSILON: 0.36000000d+04

RHO: 0.180000004+03

PA: 0.900000004+00

PB: 0.100000004+00

Q: 0.99900000d4+00
TRANSIENT MODEL PARAMETERS

ALPHA: 0.36000000d4+05

DELTA: 0.18000000d+03

EPSILON: 0.36000000d4+04

RHO: 0.180000004+03

PA: 0.50000000d4+00

PB: 0.500000004+00

G: 0.99900000d4+00
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File 3PCARE3.RS1 gives the output from program harpeng.

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 —---—-=-=————-——=
——————————————— February 1993 -----——-———=-7=-
Modelname:
3PCARE3
Input description (from dictionary file):
Component type: 1 Name: PROCESSOR
Symbolic failure rate:
LAMBDA Constant failure rate:
0.10000000D-02 +/- 0.00000000D+00
FEHM file name: CARE3.FHM
For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration: 0.59702017D+00
Permanent coverage: 0.40280819D+00
Single-point failure: 0.17163782D-03

NO near-coincident faults considered.
Time (in Hours): 0.100D+02

State Probabilities

[

State name: F1 .16103642D-06

(]

State name: FSPF .51387370D-05

Reliability =  0.99999470D+00
Unreliability =  0.52997734D-05
Total failure by redundancy exhaustion = 0.16103642D-06

GERK ODE solver: global error value 0.358D-17
relative error value 0.100D-08
See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.
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A8. Example SMMOMENTS
These files are for the triplex processor system with the Moments FEHM. The Moments
FEHM is substituted for the ARIES FEHM. (See section 6.2.)
FEHM file FEHM.MOM
PROBABILITIES.AND.MOMENTS
TRANSIENT RESTORATION EXIT:
EXIT PROBABILITY: .9800

FIRST MOMENT OF TIME TO EXIT: 0.
SECOND MOMENT OF TIME TO EXIT: 0.
THIRD MOMENT OF TIME TO EXIT: 0.

RECONFIGURATION COVERAGE EXIT:
EXIT PROBABILITY: .1615e-01
FIRST MOMENT OF TIME TO EXIT: 45.00
SECOND MOMENT OF TIME TO EXIT: .2500
THIRD MOMENT OF TIME TO EXIT: 0.
SINGLE POINT FAILURE EXIT:
EXIT PROBABILITY: .3850e-02

FIRST MOMENT OF TIME TO EXIT: 0.
SECOND MOMENT OF TIME TO EXIT: 0.
THIRD MOMENT OF TIME TO EXIT: 0.

File SMMOM.RS1 gives the output from program harpeng.

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 --——--—--~——-
——————————————— February 1993 ---——--——-oo——
Modelname:
3MMOM
Input description (from dictionary file):
Component type: 1 Name: PROCESSOR
Symbolic failure rate:
LAMBDA Constant failure rate:
0.10000000D-02 +/- 0.00000000D+00
FEHM file name: MOM.FHM
For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)
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Transient restoration: 0.98000000D+00
Permanent coverage: 0.16150000D-01
Single-point failure: 0.38500000D-02

NO near-coincident faults considered.

Time (in Hours): 0.100D+02

State Probabilities

State name: F1 0.26010668D-09

State name: FSPF 0.11548400D-03

Reliability = 0.99988452D+00

Unreliability 0.11548426D-03
Total failure by redundancy exhaustion = 0.26010668D-09
GERK ODE solver: global error value 0.175D-20

relative error value 0.100D-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.
A9. Example 3MDIST

These files are for the triplex processor system with the Distributions and Probabilities
FEHM. The Distributions and Probabilities FEHM is substituted for the ARIES FEHM. (See
section 6.2.)

FEHM file DIS.FHM
DISTRIBUTIONS.AND.PROBABILITIES
TRANSTFENT RESTORATION EXIT:

EXIT PROBABILITY: ©.00000000d4+00
RECONFIGURATION COVERAGE EXIT:

EXIT PROBABILITY: 0.990000004+00
DISTRIBUTION TYPE: EXP

RATE: 0.16670000d4-01
SINGLE POINT FAILURE EXIT:

EXIT PROBABILITY: 0.10000000d4-01
DISTRIBUTION TYPE: CONSTANT

VALUE: 0.00000000d4+00
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File 3MDIST.RS1 gives the output from program harpeng.

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 —-—----—-———-
——————————————— February 1993 ----——---—coo-
Modelname:
3PDIS
Input description (from dictionary file):
Component type: 1 Name: PROCESSOR
Symbolic failure rate:
LAMBDA Constant failure rate:
0.10000000D-02 +/- 0.00000000D+00
FEHM file name: DIS.FHM
For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration: 0.00000000D+00
Permanent coverage: 0.99000000D+00
Single-point failure: 0.10000000D-01

NO near-coincident faults considered.
Time(in Hours): 0.100D+02

State Probabilities

State name: F1 0.96552028D-08
State name: FSPF 0.29846563D-03
Reliability = 0.99970057D+00
Unreliability = 0.29943115D-03

Total failure by redundancy exhaustion = 0.96552028D-06
GERK ODE solver: global error value 0.358D-17

relative error value 0.100D-08
See Users Guide, sectiom 3.3 for interpretation.

0 Reports from the GERK ODE solver.
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A10. Example 3P2B

These files are for a triplex processor and dual bus system with the ESPN FEHM for
the processors and the VALUES FEHM for the bus. The state probabilities differ from your
execution of this example. (See section 8.)

File 3P2B.DIC gives the output from program tdrive.
1 PROCESSOR LAMBDA ESPN.FHM
INTERFERING COMPONENT TYPES: 2
2 BUS MU VALUES
INTERFERING COMPONENT TYPES:
FEIDS
7 6
File 3P2B.INT gives the output from program tdrive.

SORTED
1 2 3*xLAMBDA;
1 3 2*MU;
2 4 2+LAMBDA;
2 5 2xMU;
3 5 3xLAMBDA;
3 6 MU*X;
4 7 LAMBDA*X;
4 8 2xMU;
5 8 2+*LAMBDA;
5 6 MU*X;
8 7 LAMBDA*X;
8 6 MU*X;

FEHM File ESPN.FHM
HARP.SINGLE.FAULT.MODEL
COVERAGE INPUT PARAMETERS:

TIME DISTRIBUTION AND PARAMETERS
ACTIVE TRANSITION UNIF 0. 1.000
BENIGN TRANSITION UNIF 0. .5000
TRANSIENT LIFETIME EXP 100.0 0.
DETECT TRANSITION UNIF 0. .4000
ERROR TRANSITION WEBUL 10.00 2.500
ERROR-DETECT TRANSITION WEBUL 50.00 .2500
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ISOLATION TRANSITION NORML 4.000 1.000
RECOVERY TRANSITION ERLNG 100.0 2.000
RECONFIGURATION TRANSITION NORML 1.000 .5000
OTHER PARAMETERS:
PROBABILITY OF FAULT DETECTION BY SELF TEST: 0.9000
PROBABILITY OF ERROR DETECTION: 0.9000
PROB. OF ISOLATING DETECTED FAULT: 0.9000
NUMBER OF RECOVERY ATTEMPTS: 5
PROB. OF SUCCESSFUL RECONFIGURATION: 0.9000
FRACTION OF FAULTS WHICH ARE TRANSIENT: 0.5000
FRACTION OF FAULTS WHICH ARE PERMANENT: 0.4000
DESIRED CONFIDENCE LEVEL: 90Y
ALLOWABLE ERROR: 10%

File 3P2B.MAT gives the output from program fiface.

10

2 , 1
3*LAMBDA*C1;
3 , 1
2xMU*C2;

4 , 2
2*LAMBDA*C3;
5 , 2
2xMU*C2;

5 , 3
3*LAMBDA*C4 ;
6 , 3
MUx*X;

6 , b5
MUx*X;

6 , 8
MU*X;

7, 4
LAMBDA=*X;

7 , 8
LAMBDA*X;
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8 , 4
2*MU*C2;
8 , 5
2*LAMBDA*C5;
g , 1
3*LAMBDA*S1+2*MU*S2;
9 , 2
2%LAMBDA*S3+2*MU*S2;
9 , 3
3*LAMBDA*34,
9 , 4
2xMU*S2;
9 , b
2*LAMBDA*35;
10 , 1
3%LAMBDA*N1+2*MU*N2;
10 , 2
2+«LAMBDA*N3+2+«MU*N2;
i0 , 3
3*LAMBDA*N4;
10 , 4
2*MU*N2;
10 , 5
2*LAMBDA*N5;
0,0
File 3P2B.SYM gives the output from program fiface.
C1
3
ESPN.FHM
c2
7
0.500000 ©0.000000
R2
8
0.300000 0.000000
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N2

0.000000 0.000000
52
10
0.200000 0.000000
C3
3
ESPN.FHM
c4
3
ESPN.FHM
C5
3
ESPN.FHM
X
999
END SYMBOL DEFINITION
F1
1007
F2
1006
FSPF
1009
FNCF
1010
END FAILURE STATE DEFINITION
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Files 3P2B.RS* give the output from program harpeng resulting from successive harpeng
executions. FEach 3P2B.RS* file is the output from a subsequent execution of harpeng with
different multifault model specifications.

This listing is for 3P2B.RS1 for the same system previously presented with no near-coincident
fault model invoked.

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 ———=-————----
——————————————— February 1993 ------—-—-—---—-
Modelname:
3P2B
Input description (from dictionary file):
Component type: 1 Name: PROCESSOR
Symbolic failure rate:
LAMBDA Constant failure rate:
0.50000000D-02 +/- 0.00000000D+00
FEHM file name: ESPN.FHM
For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration: 0.50000000D+00  *These values could*
Permanent coverage: 0.36375000D-01 *change with each *
Single-point failure: 0.46362500D+00  * subsequent run. *

* (see section 10) *
Component type: 2 Name: BUS
Symbolic failure rate:
MU Constant failure rate:
0.50000000D-01 +/- 0.00000000D+00
FEHM file name: VALUES

Symbolic values:

c2 Coverage factor, value directly specified:
0.50000000D+00 +/- 0.00000000D+00

R2 Restoration factor, value directly specified:
0.30000000D+00 +/- 0.00000000D+00
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N2 NCF factor, value directly specified:

0.00000000D+00 +/- 0.00000000D+00
52 SPF factor, value directly specified:
0.20000000D+00 +/- 0.00000000D+00

NO near-coincident faults considered.
GERK report E201, Tolerances reset: 0.100D-08 0.100D-08
Time(in Hours): 0.100D+02

State Probabilities

State name: F1 0.13159858D-06 *These values could changex*
State name: F2 0.81088630D-01 *(see section 10) *
State name: FSPF 0.19924322D+00
State name: FNCF 0.00000000D+00
Reliability = 0.71966802D+00
Unreliability =  0.28033198D+00
Total failure by redundancy exhaustion = (0.81088762D-01

GERK ODE solver: global error value 0.734D-11
relative error value 0.100D-08
See Users Guide, section 3.3 for interpretation.

1 Reports from the GERK ODE solver.

This listing is for the 3P2B.RS2 file for the same previously described system with the
ALL-INCLUSIVE multifault model invoked. The state probabilities, reliability, and unreliability
values will change in each subsequent run. (See chapter 10.)

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 --——————-----
——————————————— February 1993 ---------——-----
Modelname:
3P2B

Input description (from dictionary file):

Component type: 1 Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:
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0.50000000D-02 +/- 0.00000000D+00
FEHM file name: ESPN.FHM
For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration: 0.50000000D+00 *These could change*
Permanent coverage: 0.36375000D-01 =*(see section 10) =*
Single-point failure: 0.46362500D+00

Component type: 2 Name: BUS

Symbolic failure rate:
MU Constant failure rate:

0.50000000D-01 +/- 0.00000000D+00
FEHM file name: VALUES

Symbolic values:

c2 Coverage factor, value directly specified:
0.50000000D+00 +/- 0.00000000D+00
R2 Restoration factor, value directly specified:
0.30000000D+00 +/- 0.00000000D+00
N2 NCF factor, value directly specified:
0.00000000D+00 +/- 0.00000000D+00
52 SPF factor, value directly specified:
0.20000000D+00 +/- 0.00000000D+00

ALL-INCLUSIVE near-coincident fault rate used.
Time(in Hours): 0.100D+02

State Probabilities

State name: F1 0.13157227D-06 *These values could changex*
State name: F2 0.81088606D-01 *(see section 10) =*

State name: FSPF 0.19923770D+00

State name: FNCF 0.59530150D-05

Reliability = 0.71966761D+00
0.28033239D+00

Unreliability

Total failure by redundancy exhaustion =  0.81088738D-01
GERK ODE solver: global error value  0.348D-13
relative error value 0.100D-08

See Users Guide, section 3.3 for interpretation.
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0 Reports from the GERK ODE solver.

This listing is for the 3P2B.RS3 file for the previous system with SAME-type multifault
model invoked.

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 --—------—-—-
——————————————— February 1993 -----------—--—-
Modelname:
3P2B
Input description (from dictionary file):
Component type: 1 Name: PROCESSOR
Symbolic failure rate:
LAMBDA Constant failure rate:
0.50000000D-02 +/- 0.00000000D+00
FEHM file name: ESPN.FHM
For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration: 0.50000000D+00

Permanent coverage: 0.36375000D-01

Single-point failure: 0.46362500D+00
Component type: 2 Name: BUS

Symbolic failure rate:
MU Constant failure rate:

0.50000000D-01 +/- 0.00000000D+00
FEHM file name: VALUES

Symbolic values:

Cc2 Coverage factor, value directly specified:
0.50000000D+00 +/- 0.00000000D+00
R2 Restoration factor, value directly specified:
0.30000000D+00 +/- 0.00000000D+00
N2 NCF factor, value directly specified:
0.00000000D+00 +/- 0.00000000D+00
52 SPF factor, value directly specified:
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0.20000000D+00 +/- 0.00000000D+00
SAME-TYPE near-coincident fault rate used.
Time (in Hours): 0.100D+02

State Probabilities

State name: F1 0.13159661D-06
State name: F2 0.81088627D-01
State name: FSPF 0.19924267D+00
State name: FNCF 0.59152289D-06
Reliability = 0.71966798D+00
Unreliability =  0.28033202D+00
Total failure by redundancy exhaustion = 0.81088759D-01

GERK ODE solver: global error value 0.348D-13
relative error value 0.100D-08
See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.

This listing is for the 3P2B.RS4 file for the same previous system with the USER-defined
multifault model invoked.

- The Hybrid Automated Reliability Predictor -
———————————— Release Version 7.0 -------------
——————————————— February 1993 --------————----
Modelname:
3P2B
Input description (from dictionary file):
Component type: 1 Name: PROCESSOR
Symbolic failure rate:
LAMBDA Constant failure rate:
0.50000000D-02 +/- 0.00000000D+00
FEHM file name: ESPN.FHM
For this FEHM model, the exit probabilities are:
(in the absence of near-coincident faults)

Transient restoration: 0.50000000D+00
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Permanent coverage: 0.36375000D-01

Single-point failure: 0.46362500D+00

INTERFERING COMPONENT TYPES: 2

Component type: 2 Name: BUS

Symbolic failure rate:

MU

Constant failure rate:

0.50000000D-01 +/- 0.00000000D+00

FEHM file name: VALUES

INTERFERING COMPONENT TYPES:

Symbolic values:

Cc2

R2

N2

S2

Coverage factor, value directly specified:
0.50000000D+00 +/- 0.00000000D+00
Restoration factor, value directly specified:
0.30000000D+00 +/- 0.00000000D+00
NCF factor, value directly specified:
0.00000000D+00 +/~ 0.00000000D+00
SPF factor, value directly specified:
0.20000000D+00 +/- 0.00000000D+00

INTERFERING COMPONENT TYPE near-coincident rate.

Time(in Hours): 0.100D+02

State Probabilities

State name: F1 0.13157423D-06
State name: F2 0.81088609D-01
State name: FSPF 0.19923825D+00
State name: FNCF 0.53616071D-05
Reliability =  0.71966765D+00
Unreliability =  0.28033235D+00

Total failure by redundancy exhaustion = 0.81088740D-01

GERK ODE solver: global error value 0.348D-13

relative error value 0.100D-08

See Users Guide, section 3.3 for interpretation.

0 Reports from the GERK ODE solver.
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FEHM file ESPN.FHM after running harpeng.
HARP.SINGLE.FAULT.MODEL
COVERAGE INPUT PARAMETERS:

TIME DISTRIBUTION AND PARAMETERS
ACTIVE TRANSITION UNIF 0. 1.000
BENIGN TRANSITION UNIF 0. .5000
TRANSIENT LIFETIME EXP 100.0 0.
DETECT TRANSITION UNIF 0. .4000
ERROR TRANSITION WEBUL 10.00 2.500
ERROR-DETECT TRANSITION WEBUL 50.00 . 2500
ISOLATION TRANSITION NORML 4.000 1.000
RECOVERY TRANSITION ERLNG 100.0 2.000
RECONFIGURATION TRANSITION NORML 1.000 .5000

OTHER PARAMETERS:
PROBABILITY OF FAULT DETECTION BY SELF TEST: 0.9000
PROBABILITY OF ERROR DETECTION: 0.9000
PROB. OF ISOLATING DETECTED FAULT: 0.9000
NUMBER OF RECOVERY ATTEMPTS: 5
PROB. OF SUCCESSFUL RECONFIGURATION: 0.9000
FRACTION OF FAULTS WHICH ARE TRANSIENT: 0.5000
FRACTION OF FAULTS WHICH ARE PERMANENT: 0.4000
DESIRED CONFIDENCE LEVEL: 90%
ALLOWABLE ERROR: 10%
** Cut here if parameters in FEHM have changed *x
** to obtain new simulation results. Rerun harpeng. **

SIMULATION RESULTS:

R EXIT:

PROB[REACHING EXIT]: LOW=0.49080417 NOM=0.50000000 HIGH=0.50919583

1ST MOMENT: LOW=0.48844865E-02 NOM=0.51583926E-02 HIGH=0.54322987E-02
2ND MOMENT: LOW= 0. NOM=0.13748132E-03 HIGH=0.15771914E-02
3RD MOMENT: LOW=0.52741874E-05 NOM=0.52741874E-05 HIGH=0.52741874E-05
C EXIT:

PROB[REACHING EXIT]}: LOW=0.32931688E-01 NOM=0.36375000E-01 HIGH=0.39818312E-01
1ST MOMENT: LOW= 3.2281735 NOM= 3.5878440 HIGH= 3.9475146
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2ND MOMENT:
3RD MOMENT:
S EXIT:

PROB[REACHING EXIT]:

1ST MOMENT:
2ND MOMENT:
3RD MOMENT:

LOW= 0.
LOW= 0.

LOW=0.45098586
LOW= 3.2217696
LOW= 0.
LOW= 0.
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NOM= 26.736224
NOM= 202.06828

NOM=0.46362500
NOM= 3.2808923
NOM= 25.452089
NOM= 0.

HIGH= 119.16996
HIGH= 1027.6762

HIGH=0.47626414
HIGH= 3.3400150
HIGH= 186.29844
HIGH= 0.



Appendix B

Modeling Advanced Fault-Tolerant
Systems With HARP

Since the original draft of the tutorial was written, the HARP developers have explored
the possible uses of the dynamic fault tree gates. Many of models involving the use of the
dependency fault tree gates were published in several conference proceedings and journals. One
of these papers (ref. 23) is included in this appendix to illustrate the powerful modeling flexibility
of the dynamic fault tree gates (ref. 24) and to encourage the reader to further explore their
applications through the published literature (refs. 25 to 30). Part of the work embodied in this
paper is the work of the U.S. Government and thus may be used for government purposes; any
other use is not authorized.
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Modeling Advanced Fault Tolerant Systems with HARP

Summary

Reliability analysis of fault tolerant computer systems for critical applications is complicated by several
factors. In this tutorial, we discuss these modeling difficulties and describe and demonstrate dynamic fault
tree modehng 'echniques for handling them. The techniques described include behavioral decomposition. a
Markov solution of a fault tree, and the use of special purpose gates in the fault tree to model sequence
dependent behavior. Several advanced fault tolerant computer systems are described, and fault tree models
for their analysis are presented. These systems include a loosely-coupled distributed system, a system of fault
tolerant building blocks, a fault tolerant parallel processor, a mission avionics system and several instances
of fault tolerant hypercube architectures. HARP (the Hybrid Automated Reliability Predictor) is a software
package developed at Duke University and NASA Langley Research Center that is capable of solving the fault
tree models presented int this tutorial.

Knowledge of fault tree and Markov modeling is assumed. The emphasis of this tutorial is on techniques
for constructing a dynamic fault tree model of advanced systems. This fault tree will be solved using Markov
methods. We assumne that the modeler will use some software package for solution of the model; a mathematical
discussion of solution techniques is not included.

Joanne Bechta Dugan
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Part 1
Background

1 Introduction

Fault tolerant computer systems for critical applications
are characterized by several factors which complicate
their analysis. Systems designed to achieve high levels
of reliability frequently employ high levels of redundancy,
dynamic redundancy management, and complex fault and
error recovery techniques. In this tutorial we consider
advanced fault tree modeling techniques to include these
factors in the analysis of system reliability.

In this tutorial, we assume the following

e Faults occur randomly and are statistically indepen-
dent.

o Lifetime distributions are exponential. Faults occur
at a constant average rate, which is referred to as the
failure rate of the component.

» Mission lengths are relatively short, so that the prob-
ability of more than a few failures is low.

e The systems are not repairable while in use.

Systems which violate these assumptions can be handled
by more sophisticated techniques which fall outside the
scope of this tutorial.

There are several possible for the reliability analysis of
fault tolerant computer systems for critical applications.
In addition to predicting the reliability of the system for
a specified mission time, these techniques can facilitate
tradeoff analysis for various fault tolerant techniques, or
can be used to compare alternative architectures for a
system still in the design phase. Even if a system exists
only as a rough sketch on paper, analysis techniques can
be used to analyze parametric sensitivity in order to de-
termine which factors have the strongest impact on the
reliability of the system.

Fault trees are frequently used for reliability analysis
of critical systems. Fault tree models are well accepted
and solution methods are well known, but exact analy-
sis of fault trees with many basic events is often expen-
sive, both in terms of developing the model and in solving
the model once it is developed. Also, several important
types of dynamic behavior in advanced fault tolerant sys-
tems cannot be adequately captured in a standard fault
tree model. These dynamic behaviors include transient
recovery, intermittent errors, and sequence dependency.
Markov models present an alternative modeling technique
that is flexible enough to model nearly any such dynamic
system. Tools and techniques exist for the solution of
even very large Markov models. However, the construc-
tion of a Markov model for any but the simplest system
can be tedious and error prone.
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To exploit the relative advantages of both fault trees
and Markov models, while avoiding many of the short-
comings, we define a model that is flexible enough to
capture the dynamic aspects of the system, but which
is (almost) as easy to use as a standard fault tree. The
model construction and solution process is facilitated by
the new model in three major ways, which are defined
and demonstrated via example in this tutorial.

o Behavioral decomposition is used to separately define
models for system structure and fault recovery.

o Several additional gates are introduced into the fault
tree model to capture dynamic behavior.

o The fault tree model of system structure is internally
and automatically converted to a Markov model, to
which is added the fault recovery information.

These techniques have been implemented in HARP (the
Hybrid Automated Reliability Predictor), a software
package for the analysis of advanced fault tolerant sys-
tems, developed by NASA Langley Research Center and
Duke University.

The models exampled described are all solved using
HARP. For more information about the availability of
HARP, contact Sal Bavuso at the NASA Langley Re-
search Center, Mail Stop 478, Hampton, VA, (804} 8Gt-
6189. The techniques implemented in HARP are de-
scribed in more detail in other publications. References
[2, 10, 16, 19] are general papers describing HARP. More
details of the models presented here, as well as other mod-
els using HARP appear in {1, 4, 5, 11, 8]. Modeling the
recovery process is covered in detail in [9].

2 Behavioral decomposition

A common approach to modeling complex systems con-
sists of structurally dividing the system into smaller sub-
systems (e.g. processors, memory units, buses), analyzing
the dependability of the subsystems separately, and then
combining the subsystem solutions to obtain the system
solution. A system level analysis can then be effected by
analyzing each subsystem separately and combining the
results to obtain the final solution. This structural de-
composition is allowed only if the subsystems’ fault tol-
erant behaviors are mutually statistically independent.

An alternative to such a structural decomposition is
behavioral decomposition. Generally, the time scale for
the occurrence of faults and their associated errors is rel-
atively long (i.e. weeks or months) while the time scale
for recovery is relatively short (milliseconds). Behavioral
decomposition exploits this time scale difference, by al-
lowing an analyst to describe the two behavior types (oc-
currence and recovery) in separate models.

Using behavioral decomposition, the model is decom-
posed into fault-occurrence and repair (FORM) and fault
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Figure 1: Fault tree model of example system

Figure 2: Markov chain model of example system

and error handling (FEHM) submodels. The FORM con-
tains information about the structure of the system and
the fault arrival process. The FEHM (often called the
coverage model) allows for the modeling of permanent,
intermittent, and transient faults, and models the on-line
recovery procedure necessary for each fault type. We de-
scribe this process of model construction by way of a sim-
ple three processor, two memory (3P2M) example system.

2.1 The fault occurrence and repair

model (FORM)

We wish to model a computer consisting of three pro-
cessors and two shared memories (3P2M) communicating
over a shared bus. The system is operational as long as
one processor can communicate with one of the memo-
ries. We describe the system structure model as a fault
tree, as shown in figure 1, where the top event, System
Failure is caused by bus failure OR all processors failing,
OR both memories failing. The abbreviation for the com-
bined basic event i * j represents i statistically indepen-
dent occurrences of component type j.

Figure 2 shows the (continuous time) Markov chain
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Figure 3: General structure of FEIIM

representation of the system whose fault tree is shown
in figure 1. The states are labeled with an ordered triple,
where element

1. denotes the number of operational processors,
2. denotes number of operational memoties, and
3. denotes the state of the bus.

An arc between states (i,7,k) and (5 - 1,7,k) is labeled
with i « A ( where A is the failure rate of processors).
Likewise, an arc between states (3, j, k)and (i,7—1,k)is
labeled with j * u (where 4 is the failure rate of memory
units). The failure rate of the bus is .

F1 represents exhaustion of the processor cluster
F2 represents exhaustion of the memoties, and
F3 represents failure of the bus.

The fault tree in figure 1 can be automatically con-
verted to the Markov chain in figure 2. All possible oc-
currences of basic events that leave the system operational
are enumerated; each combination becomes a state in the
Markov chain.

The advantage of allowing a fault tree description of the
system is that the modeler need not perform the tedious
task of determining the Markov chain representation of a
system that can be described as a fault tree. Very often,
a relatively simple fault tree can give rise to a very large
and complicated state space in the corresponding Markov
chain. The modeler can use the parsimony of the fault
tree representation of the system to generate the state
space of the Markov chain automatically, and then make
adjustments to the Markov chain as needed.

2.2 The fault and error handling model
(FEHM)

We next concentrate on modeling the detailed behavior
of the system when a fault occurs. The general structure
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of a model that represents the recovery process that is
initiated when a fault occurs is shown in figure 3. The
entry point to the model signifies the occurrence of the
fault, and the three exits signify three possible outcomes.
The transient restoration exit (labeled R) represents the

correct recognition of and recovery from a transient fault. 98 02

A Lennsient in usunlly cuumed by externnl or environmen- Single BI]

tal factors, such as exccssive heat or a “glitch” in the memory multiple bit
power line. It is generally believed that the vast majority | error Mmemory error

of faults are transient. Successful recovery from a tran-
sient fault restores the system to a consistent state with-

out discarding any components, for example by retrying error masked 93 05
an instruction or rolling back to a previous checkpoint. n zer'o time [ delecied | not
Reaching this exit successfully requires timely detection transient detected
of an errar produced by the fault, performance of an ef- re§ltoratlon rallure
fective recovery procedure, and the swift disappearance ;x' attempted exit
of the fault (the cause of the error). recovery S

The permanent coverage exit (labeled C) denotes the takes .45
determination of the permanent nature of the fault, and seconds
the successful isolation and removal of the faulty compo-
nent. The single point failure exit (labeled S) is reached
when a single fault causes the system to crash. This gen- 8S, ]
erally occurs if an undetected error propagates through [ TR ]
the system, or if the faulty unit cannot be isolated and
thus the system cannot be reconfigured. ::f:nﬂguratlon leilure

As an example of a FEHM for the memory subsys- C ;xlt

tem of figure 1, assume that single-bit memory errors
(which are 98% of all memory faults) can be masked and
faults that affect more than one memory bit are 95% de-
tectable. Upon detection of a multiple memory error, Figure 4: Recovery model for memory subsystem
the affected portion of memory is discarded, the memory
mapping function is updated, and the needed informa-
tion is reloaded from a previous checkpoint and updated
to represent the current state of the system. The first two
moments ! of the time to perform this recovery have been
determined by experiment to be 0.45 and 0.25 (time scale
in seconds). Experimentation also revealed that this re-
covery from the detected multiple memory errors is 85%
effective. It follows that a memory fault causes a single
point failure (in zero time) with probability 0.00385 =
0.02 * (0.05 + 0.95*0.15)] if it causes multiple errors and
is not detected or is not recoverable. This behavior can be
captured in a FEHM model by providing the probability
of reaching each of the three exits and by providing the
first few moments of the time to reach each exit. Figure
4 is a pictorial representation of the recovery process for
the memory subsystem.

The recovery process for the faults that occur in the Permanent
processor is more complex. When a fault occurs in a Processing "?;::ry
processor, a multi-step recovery process commences.

1. Wait for 0.1 second and do nothing, in the hope that
the fault is transient and will disappear.

L1f, in successive experiments, recovery times are Ty, Tz, ..., Ty, Figure 5: ARIES transient fault recovery model
then the mean (first moment) is f E:-l T, and the second moment

. k
is } E,.x T,
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2. Retry the offending computation several times,
which takes, say 0.5 seconds.

3. If the fault still persists, a rollback to a previous
checkpoint followed by recomputation is performed,
taking 2 seconds total.

4. If the fault still persists then it is assumed to be
permanent, and a permanent recovery process is ini-
tiated.

In all, there are up to 3 phases of transient recovery, pos-
sibly followed by a permanent recovery. The 3 phases of
recovery succeed (i.e. the system is operational at the
conclusion of the phase) with probabilities 0, 0.5, and
0.8, respectively; the permanent recovery process suc-
ceeds with probability 0.875. The average lifetime of a
transient fault is 0.5 seconds. The ARIES transient recov-
ery model (shown in figure 5) represents a multi-phase re-
covery process that executes n successive recovery phases,
and is used to model the recovery process for processor
failures. The parameters shown on the ARIES model in
figure 5 are calculated from the input parameters that
describe the recovery process.

2.3 Near-coincident faults

In highly reliable systems, such as those used for flight
control, the probability of a second fault occurring while
attempting recovery from a given fault cannot be ignored.
The occurrence of a second, near-coincident fault (while
attemnpting to handle a single fault) causes immediate sys-
tem failure, if the second and first faults are critically
coupled. The modeler must designate which sets of faults
are critically coupled, or can assume either extreme: all
faults are critically coupled or no faults are critically cou-
pled. Once the set of critically coupled faults has been
determined, the calculation of the probability of near-
coincident faults is straightforward, given some measure
of the time spent in a recovery model. In the 3P2M ex-
ample, if a processor fails while a memory failure is being
handled, or during the recovery from a fault in another
processor, the system fails. If, however, a memory fails
during a processor recovery, no immediate failure occurs.
A bus failure would interfere with processor or memory
recovery.

A fourth exit is then added to the FEHM model, rep-
resenting the occurrence of a near-coincident fault be-
fore another exit is reached. Consequently, the probabil-
ity of reaching one of the original three exits is reduced
by a factor equaling the probability that an interfering
near-coincident fault does not occur. This single-entry 4-
exit model is then automatically inserted into the FORM
model, as described in the following section.

FTS - 4 Dugan, et al.

Cause of Failure Probability
Exhaustion of Processors | 2.20 x 10-1°
Exhaustion of Memories | 1.61 x 10~1°
Exhaustion of Buses 9.99 x 106
Single Point Failure 3.53 x 10-%
Near-Coincident Faults 4.49 x 10710
Total Unreliability 4.53 x 10~°

Table 1: Solution of 3P2M example system

2.4 Combining FORM and FEHM mod-

els

Once the FORM and FEHM models are described, they
are then combined. We demonstrate this process for the
Markov chain in figure 2 which results from the fault
tree in figure 1. For each failure of a redundant com-
ponent, the appropriate FEHM model is invoked. That
is, a FEHM model is inserted on each failure arc between
operational states in the Markov chain, as shown in figure
6. In the 3P2M example, the FEHMs on the horizontal
failure arcs are copies of the ARIES model (figure 5),
while the FEHMs on the vertical failure arcs are copies of
the memory coverage model (figure 4). Two failure states
are inserted:

o FSPF denoting the occurrence of a single-point fail-
ure, and

e FNCF denoting the occurrence of critically coupled
near-coincident faults.

Each FEHM model is then solved for the probability of
reaching each of its three exits, and the FEHM model is
replaced by a branch point. The resulting Markov chain
(see figure 7) is then solved for the reliability of the sys-
tem, which is given by the probability that the system is
not in any failure state.

Table 1 shows the results of the reliability analysis for
a 10 hour mission of the 3P2M example. For this model.
we assume that the failure rate of the processor A = 1074,
for the memory g = 1075 and for the bus o = 10=%. The
largest contributor to the unreliability is single-point fail-
ure, that is, faults from which recovery is not successful.

3 Dynamic fault-tree gates

A major disadvantage of traditional fault tree analysis
is the inability of standard fault tree models to capture
sequence dependencies in the system, and still allow an
analytic solution. As an example of a sequence dependent
failure, consider a system with one active component and
one standby spare connected with a switch controller [15].
1f the switch controller fails after the active unit fails (and
thus the standby is already in use), then the system can
continue operation. However, if the switch controller fails
before the active unit fails, then the standby unit cannot
be switched into active operation and the system fails.
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Figure 8: Functional dependency gate

Thus, the failure criteria depend not only on the com-
binations of events, but also on the sequence in which
events occur.

Systems with various sequence dependencies are usu-
ally modeled with Markov models. If, instead of using
standard fault tree solution methods, the fault tree is
converted to a Markov chain for solution, the expressive
power of a fault tree can be expanded by allowing cer-
tain kinds of sequence dependencies to be modeled by
defining special purpose gates to capture specific types of
sequence dependent behaviors. There are several different
kinds of sequence dependencies in fault tolerant systems.
This section identifies several such dependencies, and de-
fines specific gates to express these behaviors in fault tree
models. Part II demonstrate the use of these gate types
in several examples.

3.1 Functional dependency gate

Suppose that a system is configured such that the occur-
rence of some event (call it a trigger event) causes other
dependent components to become inaccessible or unus
able. In this case, later failures of the dependent compo-
nents will not further affect the system and should not
be considered. A functional dependency gate (see figure
8) has a single trigger input (either a basic event or the
output of another gate in the tree), a non-dependent out-
put (reflecting the status of the trigger event) and one or
more dependent, basic events. The dependent basic events
are functionally dependent on the trigger event. When
the trigger event occurs, the dependent basic events are
forced to occur. In the Markov chain generation, when a
state is generated in which the trigger event is satisfied,
all the associated dependent events are marked as having
occurred. The occurrence of any of the dependent basic
events has no effect on the trigger event.

The functional dependency gate is useful where com-
munication is achieved through some network interface el-
ements, where the failure of the network element isolates
the connected components. In this case, the failure of the
network element is the trigger event and the connected

FTS - 6 Dugan, et al.
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Figure 9: Cold spare gate

components are the dependent events. Part II describes
several applications of the functional dependency gate.

3.2 Cold spare gate

Consider a system that utilizes cold spares, that is, spare
components that are unpowered, and thus do not fail be-
fore being used. Such systems cannot be modeled exactly
using standard fault tree techniques because the system
failure criteria cannot be expressed in terms of combina-
tions of basic events, all using the same time frame.

We address this fault tree deficiency by introducing a
cold spare gate (see figure 9), with one primary input and
one or more alternate inputs. All inputs are basic events.
The primary input is the one that is originally powered
on, and the alternate input(s) specify the (initially un-
powered) components that are used as replacements for
the primary unit. The cold spare gate has one output
which becomes true after all the input events occur.

The conversion of the fault tree to a Markov chain
makes the consideration of cold spares possible. In a state
where the primary unit is operational, the cold spares are
not permitted o faill. However, once the primary unit
has failed, then the first alternate unit can fail. After
the first alternate fails, the remaining alternates are al-
lowed to fail, one at a time in the order specified, until
the spares are exhausted. The possibility of being unable
to reconfigure correctly the spare unit into operation is
captured in the (separately specified) coverage model.

The functional dependency gate and the cold spare gate
<an interact in an interesting way. Suppose that the spare
units are functionally dependent on some other (other-
wise unrelated) component. The occurrence of the trigger
event can render one or more of the spares unusable, even
if they have not been switched into active operation yet.
Then, if the primary unit fails, the spares are unavailable
to replace it. This is the one case where a spare can “fail”
even while it is unpowered. Part II gives examples of the
use of the cold spare gate.
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Figure 11: Cascading priority-AND gates

3.3 Priority-AND gate

The priority-AND gate is logically equivalent to an AND
gate, with the added condition that the events must occur
in a specific order. The priority-AND gate (as shown
in figure 10) has two inputs, A and B. The output of
the gate is true if both A and B have occurred, and if
A occurred before B. If both events have not occurred,
or if B occurred before A then the gate does not fire.
To represent the behavior that A occurs before B which
occurs before C, the priority-AND gates can be cascaded
as shown in figure 11.
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3.4 Sequence enforcing gate

The sequence enforcing gale forces events to occur in a
particular order. The input events are constrained to oc-
cur in the left-to-right order in which they appear under
the gate (i.e., the leftmost event must occur before the
event on its immediate right which must occur before the
event on its immediate right is allowed to occur, etc.).
There may be any number of inputs (see figure 12), the
first of which may be a (poesibly replicated) basic event
or the output of some other gate. All inputs other than
the first are limited to being (possibly replicated) basic
events. The sequence enforcing gate can be contrasted
with the priority-AND gate in that the priority-AND gate
detects whether events occur in a particular order (the
events can occur in any order) where the sequence enforc-
ing gate will only allow the events to occur in a specified
order.

In the generation of a Markov chain from a fault tree
containing a sequence enforcing gate, states that repre-
sent any other ordering than that specified by the se-
quence enforcing gate are never generated. In part 2 of
this tutorial we will show an interesting application of the
sequence enforcing gate to model pooled spares.
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Part 11
Examples

We study several examples of advanced fault tolerant sys-
tems, and develop fault tree models to analyze the reli-
ability of these systems. The models are all solved with
HARP, the Hybrid Automated Reliability Predictor, de-
veloped at NASA Langley Research Center and Duke
University. The parameters used for these model and the
details of the recovery mechanism are pure conjecture,
and should not be interpreted as a factual representation
of the parameters associated with the systems.

4 Cm*: a loosely-coupled dis-
tributed system

4.1

An instance of the Cm* system (shown in figure 13) con-
sists of 2 clusters of processors and memories connected
by links [18]. Each cluster consists of 4 local switch inter-
face controllers (S.locak), each attached to one processor
and one 12K memory module. Each processor has 4K of
memory on board. The K.map is a cluster controller con-
necting the 5.locals; the clusters are connected by inter-
cluster communications (L.inc). A fault in the K.map
renders the associated S.locals (and their connected pro-
cessors and memories) inaccessible, while a fault in an
S.local makes the processor and memory modules con-
nected to it inaccessible.

The Cm* system exhibits three characteristics that are
typical of reliable distributed systems.

System description

1. There are functional interdependencies which can
make the development of the fault tree model diffi-
cult, for example, the dependence of the accessibility
of t.:» processors and memories on the state of the
S.locals.

2. There are many potential system states: since there
are 27 components, the system can be in any one of
2?7 > 134 million states, if any component can be in
one of two states, functional and failed.

3. There are many failure modes: there are 5405 min-
imal cut sets for this system (a cut set is a set of
components whose failure causes the system to fail).

4.2 Failure criteria

The system is considered operational as long as there are
3 processors that can communicate with 3 memories. As
long as the L.inc is operational, these requirements can
be satisfied by the components of both clusters. But, if
the L.inc fails, the requirements must be met within one
cluster.

FTS - 8 Dugan, et al.
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Figure 14: Fault tree model of Cm* system

4.3 Fault tree model

The development of the fault tree model of the Cm* sys-
tem is simplified by the use of a functional dependency
gate, to capture the interconnection dependencies. A
fault tree model of the Cm* system is shown in figure
14. System failure (the top event) can be attributed to
one of two causes which are shown as inputs into the up-
permost OR gate. Failure occurs when either the L.inc
fails and the requirements cannot be satisfied by a sin-
gle cluster (the left input to the uppermost OR gate), or
(independent of the state of the L.inc) there are an in-
sufficient total number of processors or memories in both
clusters. The output of an m/n gates is true when m of
the n input events have occurred.

The functional dependencies of the $.locals on the
K.maps and of the processors and memories on the asso-
ciated S.local are captured in the functional dependency
gates (FDEP) shown in figure 14. In this case, there
were no explicit reliability requirements concerning the
K.maps or S.locak, so the functional dependency gate
is not explicitly connected to the top event in the fault
tree. In order to solve a fault tree model containing func-
tional dependency gates via standard combinatorial solu-
tion methods, we need to convert the model to a strictly
combinatorial one. To accomplish this conversion, the
dependency gates can be replaced with OR gates in the
following manner. For each occurrence of a dependent
basic event, replace that basic event with a logical OR of
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Figure 15: Fault tree model of Cm* system without functional dependency gates
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Figure 16: An AIPS I/O network used for example cal-

culations

the basic event and its trigger event. Thus in the Cm*
system, each basic event representing a processor failure
is replaced by a logical OR of that processor event, its
S.local and its K.map. Memory events are altered in a
similar manner. The fault tree that results from replac-
ing the functional dependency gates is shown in figure 15.
The replacement of the functional dependency gates only
produces a correct result if no FEHM models are used,
that is, if all faults are permanent and are instantaneously
and perfectly covered.

5 AIPS: a system of fault-
tolerant building blocks

5.1 System description

An example of the AIPS (Advanced Information Process-
ing System) I/O network is shown in figure 16. The AIPS
system, designed at the Charles Stark Draper Laboratory,
is intended to provide fault-tolerant building blocks that
can be used for a variety of real-time control applications
(12]. The AIPS 1/O network might be used in a flight con-
trol system, and consists of 3 rings, each of which contains
5 nodes. Three of the nodes on each ring (those labeled 4,
B, E) are connected to sensors and/or actuators. Each
such device is triplicated, with one copy of each device
connected to each ring, via a node in the same location
(with the same letter label). The remaining two nodes,
C and D, are termed root nodes because they provide the
connections to the triplicated computers.

5.2 Failure criteria and parameters
The 1/0 network fails when

1. Nodes in the same location on two different rings
either fail or become isolated from both root connec-
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tions, OR

2. if 2 of the 3 computers fail or become disconnected
from both rings, OR

3. when 2 of the three rings become disconnected from
both computers.

As long as a node can communicate with one computer, it
can communicate with all computers that are up because
the computers are assumed to be connected by a perfectly
reliable interconnection mechanism (such as shared mem-
ory). For the purpose of this analysis we consider only the
1/O network and the computer connections, and not the
possible failures of the devices (such as sensors and ac-
tuators) connected to the nodes. The failure parameters
used for this analysis are

¢ Node failure rate: 6 x 10~¢ per hour
o Link failure rate: 12 x 1075 per hour

o Computer failure rate: 104 per hour

5.3 Fault recovery

Recovery from faults in nodes and links is assumed to
be perfect and instantaneous. For the computers, how-
ever, more detailed coverage modeling is necessary. It
is assumed that 85 percent of the faults that occur in
the computer system are transient, with the remaining 15
percent being permanent or intermittent in nature. Re-
covery from computer faults is assumed to be perfect, but
not instantaneous: the time to recover from a transient
is 1 second, while the time to recover from a permanent
or intermittent is uniformly distributed between 1 and 5
seconds. During the recovery interval, if a second, near-
coincident fault occurs in either of the other computers,
the recovery is interrupted, and system loss is conserva-
tively assumed to occur.

5.4 Fault tree model

The fault tree model of the AIPS 1/O network has 102
nodes, including 39 basic events, and is too large to be
presented here as a whole. However, figure 17 is a sketch
of the fault tree with some of the paths complete. The
system fails when one of the seven triplicated subsystems
fail (hence seven 2/3 gates are connected to the top OR
gate), these being node groups A through E, the comput-
ers, and the root connections between the rings and the
computers. A representative of each of the 7 subsystems
is shown in detail; the other members of each triplicated
subsystem are analogous. The results of the solution of
this model appear in table 2.

5.5 Truncated fault tree

An interesting alternative to the development of the full
fault tree model is the concept of a truncated fault tree.
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Full Fault Tree Model Solution
AIPS I/O Network Example System

Truncation Level
Size Of Truncated Model

1 Component Failure
42 states, 190 transitions

2 Component Failures
770 states, 5155 transitions

Lower Bound on Unteliability
Upper Bound on Unreliability

0.125e-6
2.94e-6

0.126e-6
0.128e-6

Total Run Time

65 CPU seconds

1295 CPU seconds

Table 2: Solution of example AIPS system

Figure 17: Fault tree model of AIPS 1/0 network
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Figure 18: Truncated fault tree model of AIPS network
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For the AIPS network (figure 16), the expansion of only
2 failure levels produced a reasonably accurate estimate
of the system unreliability. For this case, we could have
produced a similar result with a much simpler fault tree,
one which explicitly defined only the 2 component failure
combinations. Consider the fault tree representation of
the AIPS network in figure 18. The top event of this tree
is 2-component failure system loss, where the system loss is
caused by losing 2 members of any triplicated subsystem.
No combination of 2 link failures, or one link failure and
one other component failure can lead to system failure,
and so the link basic events do not input to any gates in
the truncated fault tree. The presence of these dangling
basic events (basic events that do not input to any gate
in the fault tree) can be used to bound the failure prob-
ability. If the dangling basic events are ignored then the
solution of the fault tree gives an optimistic estimate of
the unreliability of the system.

If we are using a strictly combinatorial solution
method, we can use the dangling basic events to deter-
mine the upper bound on the unreliability by using a
k-out-of-n gate. Connect all n basic events (those that
are dangling as well as those that are not) to an 3-out-of-
n gate (a gate that is activated on the third component
failure), and OR its output with the top event of the tree.
This i8 equivalent to assuming that the third component
failure causes system failure.

If we need to include the eflects of imperfect coverage
in the model, we can use the dangling basic events in con-
junction with the conversion of the fault tree to a Markov
chain. As the Markov chain state space is expanded, all
the basic events become part of the state definition. The
resulting Markov chain can be used to produce bounds
on the unreliability of the system from the solution of
the truncated fault tree. It is not necessary in this case
to add the m-out-of-n gate as was done with the strictly
combinatorial solution. The basic events are simply left
dangling. The presence of dangling basic events is cru-
cial to the determination of correct bounds on the system
unreliability.

The solution of the truncated Markov chain corre-
sponding to the truncated fault tree of the AIPS system
is shown in table 3. A comparison of the numbers in this
table with those in table 2, shows that the truncated fault
tree can give reasonable results. The time needed by a
reliability analyst to determine a truncated fault tree is

FTS - 11
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Truncated Fault Tree Model Solution
AIPS I/O Network Example System

Truncation Level
Size Of Truncated Model

1 Component Failure
42 states, 190 transitions

2 Component Failures
770 states, 4879 transitions

Lower Bound on Unreliability
Upper Bound on Unreliability

0.126e-6
0.640e-6

0.1261e-6
0.1263e-6

Total Run Time

58 CPU seconds

1144 CPU seconds

Table 3: Solution of truncated fault tree model of AIPS system

Processing
. <« elements

. t
Eotattnent * 1
region |

Figure 19: An instance of the fault tolerant parallel pro-
cessor

substantially less than the time required to derive a com-
plete fault tree mod~l of a system. Further, the combi-
nation of a truncated solution technique and a truncated
fault tree can allow more faith to be placed in the model,
since if there are missing failure combinations they may
be accounted for by the bounding technique.

6 FTPP: Fault tolerant parallel
processor

6.1

Next we consider several models of the FTPP (Fault Tol-
erant Parallel Processor) {14, 13] cluster, to compare var-
ious configurations of triads with spares. An instance of
an FTPP cluster is shown in figure 19, and consists of 16
processing elements (PE), with 4 connected to each of 4
network elements (NE). The network elements are fully
connected. In the clusters modeled here, the 16 proces-
sors are logically connected to form 4 triads, each with
one spare. We investigate three triad/spare configura-
tions, the first two with hot spares and the third with
cold spares:

System description
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#1 utilizes hot spares; there is one spare for each triad
and all spares are attached to the same network ele-
ment.

# 2 also uses hot spares; there is one spare on each net-
work element and the spare PE can substitute for any
failed PE attached to the same network element.

# 3 is the same as #1, with all spares on the same NE,
but in configuration #3 the spares are cold.

The processing elements in all three configurations
functionally depend on the network element to which they
are connected. If a network element experiences a perma-
nent failure, the processing elements connected to it are
then considered failed.

6.2 Failure criteria and parameters

For all models, a triad fails when it has fewer than 2 active
components; the system fails if any triad fails. Failures
occur at a constant rate of 1.1 x 10~* per hour for pro-
cessing elements, and 1.7 x 105 per hour for network
elements.

6.3 Fault recovery

Recovery and reconfiguration from faults in processing el-
ements are both perfect, but take a non-zero amount of
time. If a second fault occurs in any other component dur-
ing attempted recovery from a first fault, the system fails.
Half of the faults that occur in the processing elements are
transient, and can be recovered from without discarding
the affected component. The remainder of faults are per-
manent. The time to recover is exponentially distributed
with a mean of 3.6 seconds. Coverage of NE failures is
both instantaneous and perfect.

6.4 Fault tree models

6.4.1 Configuration #1

Configuration #1 (shown in figure 20) divides the active
elements of a triad among NEI, NE2 and NES, and uses
the PE’s on NE{ as spares. The PE’s that are in the same
relative position on the first three network elements form
a triad, and the PE in the same relative position on NEJ
serves as a hof (active) spare for the triad.
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Figure 21: Fault tree model for configuration #1
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The fault tree model for configuration #1, shown in
figure 21, uses four functional dependency gates (FDEP)
to reflect the dependence of the processing elements on

the network elements. The FDEP gates are not explic-
itly connected to the other gates in the tree, since the
reliability requirements (all 4 triads must be operational)
do not explicitly mention the network elements. Figure
21 shows four 3/4 gates connected to the top OR gate,
one 3/4 gate for each triad. A triad fails when only one
element remains (3 of the 4 elements have failed).
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Figure 20: Configuration #1 with one spare per triad

6.4.2 Configuration #2
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Configuration #2 is an FTPP cluster with hot spares dis-
tributed across the network elements instead of grouped
on the same network element (see figure 22). The spare
element on each network element can substitute for any
failed PE connected to the same NE. That is, processing
element TS| can substitute for a failed PE connected to
NEL

The fault tree model of this system is a bit more com-
plex than the one presented in section 6.4.1, and is shown
in figure 23. The functional dependency gates FDEP
again reflect the dependence of the processing elements
on the network elements. A triad failure is again at-
tributed to losing the majority of operational elements,
but it is more difficult to describe the failure of a member
of the triad. A member of the triad is failed if it and
its spare fail or if its spare is not available when needed.
The spare is not available if some other PE on the same
NE fails and uses the spare before it is needed by the
first PE. For example, in figure 23, the leftmost OR gate
that inputs into the leftmost 2/3 gate represents the fail-
ure of the first member of the first triad. This member
fails if both T'1, (the first member of the first triad) and
its spare (T'Sy) fail, or if the spare is being used because
another failure has already occurred when T, fails. The
spare will already be in use when T'1, fails if either T2, or
T35 (the other two active components on the same NE)
have failed before T'1, does. This condition is reflected in
the Priority-AND gate that inputs to the same OR gate.
There is a similar structure of AND and Priority-AND
gates to represent the failure of the other members of the
triads.

6.4.3 Configuration #3

The third configuration is used to investigate the effect on
reliability of keeping the spares unpowered until needed.
The FTPP configuration modeled in this section is the
same as configuration #1 (figure 20) except that the
spares are cold rather than hot. There is one spare for
each triad, and all spares are connected to the same net-
work element. The fault tree model for this system, shown
in figure 24, uses the cold spare gate. There is one cold
spare gate for each member of each triad, where the ini-
tially active members of the triad are used as the primary
inputs. The basic event representing the cold spare PE is
connected to all three cold spare gates since it can sub-
stitute for any of the elements.

6.5 Results

This section presents the results obtained from solution
of the models of the three FTPP configurations for a mis-
sion length of 10 hours. Table 4 contains a compares the
reliability of the three configurations. We solved a trun-
cated model (described in more detail later in this section)
which produces bounds on the unreliability from a partial
solution of the model. Table 4, shows the bounds on the
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unreliability, and the best case (optimistic) estimate of
the probabilities of exhaustion of network elements (exh
NE), exhaustion of processing elements (exh PE) and near
coincident failures (NCF).

Configuration #2 (that distributed the hot spares
across the network elements) not only required a more
complicated fault tree for analysis, but also was apprecia-
bly less reliable than configuration #1. In configuration
#2, the failure of 2 network elements (alone) can kill the
system, since the failure of 2 network elements removes
2 members from at least one triad. For example, if NEI
and NEZ2 both fail, then T'1; and T1; are both disabled,
and no spare is available to replace them (because of the
functional dependencies). The solution of the model for
configuration #2 shows that the predominant cause of
failure is the exhaustion of network elements. In config-
uration #1, the loss of 2 network elements (alone) does
not cause any triad to fail, even though it can render all
the spare elements unusable.

In the #3 configuration, the spare elements remained
unpowered until needed, resulting in a modest decrease
in unreliability. Since near-coincident fatlures contributed
more highly to the unreliability of the system, the effect
of keeping the PEs unpowered was not as significant as
might be expected.

For all three models, the Markov chain was truncated
after the consideration of 2 or 3 faults, and so a pair
of bounds on the actual reliability were generated. The
bounds were tight enough after only considering 2 faults
for configuration #2, but we needed to consider a larger
model for the other two cases. The reason that the
bounds were tighter for configuration #2 is that there
were a significant number of failure states encountered
when only considering 2 component failures. In the #1
and #3 configurations, there were not many failure states
with only 2 failed components. Unfortunately, the num-
ber of states in a Markov chain increases exponentially
with the number of component failures considered, so the
increase in accuracy is accompanied by a large increase
in solution times. Table 5 compares the results obtained
from the smaller model (truncated after 2 failures) and
the larger model (truncated after 3 failures), as well as
the size of the models and the run time for the complete
generation and solution of the model on a DECstation
3100.

7 ASID MAS: a mission avionics
system

7.1 System Description

The ASID (Advanced System Integration Demonstration)
project was the first large scale effort in the development
of the PAVE PILLAR architecture for advanced tactical
fighters. The Boeing Military Airplane Company was one
of five contractors who designed implementations of the
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System Failure

Figure 23: Fault tree model for configuration #2

[ Configuration [[ #2: Hot spare per NE | #1: Hot spare per triad | #3: Cold spare per triad |
(Best Case) Unreliability [ 0.207 x 10~° 0.406 x 10~7 0.264 x 10~7
(Worst Case) Unreliability || 0.417 x 10-¢ 0.407 x 107 0.266 x 10~7
(Best case) exh. NE 0.174x 1075 0.135 x 10~° 0.104 x 10~°
(Best case) exh. PE 0.327 x 10-8 0.910 x 10~8 0.705 x 10-8
(Best case) NCF 0.302 x 1077 0.302 x 10-7 0.183 x 1077

Table 4: Results of the solution of all three FTPP models

{ Configuration

[[ #2: Hot spare/NE | #1: Hot spare/triad | #3: Cold spare/triad |

Truncated at 2 component failures

(Best Case) Unreliability 0.207 x 10~° 0.406 x 10~7 0263 x 10-7
(Worst Case) Unreliability || 0.417 x 10~¢ 0.242 x 10-¢ 0.132 x 10-¢
Number of states 201 123 225

Number of transitions 877 581 817
Runtime (CPU seconds) 138 99 99
Truncated at 3 component failures

(Best Case) Unreliability 0.406 x 10=° 0.264 x 107
{Worst Case) Unreliability || analysis not 0.407 x 10-7 0.266 x 10-7
Number of states necessary for 961 2307
Number of transitions this example 5469 9777
Runtime (CPU seconds) 2653 5055

Table 5: Comparison of accuracy and model size
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Figure 24: Fault tree model for configuration #3 with one COLD spare per triad
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PAVE PILLAR project. A unique feature of the Boeing
implementation {3] is the use of dual processor pairs wher-
ever a single processor is required. This processor-pair
uses comparison monitoring so as to achieve very high lev-
els of error detection. For critical functions, high levels of
reliability are assured by using redundant processor-pairs
in duplex or triplex mode. We analyze the reliability of
the critical functions of the mission avionics subsystem of
the ASID system.

There are several critical functions within the mission
avionics system (MAS). The loss of any of these func-
tions causes the system to fail. These critical functions
include the vehicle management system (VMS), the crew
station control and display functions, mission and systems
management, local path generation, and scene and obsta-
cle following functions. The vehicle management system
provides airframe control, including flight and propulsion
control, as well as providing utility systems management
and control. The crew station subsystem displays infor-
mation to the pilot, contains mechanisms for pilot control
actions, and manages crew station activity. The mission
and systems management subsystem allocates resources
for real time control functions.

Figure 25 is a block diagram of the architecture of the
critical mission avionics system. One processing unit is
required for the crew station functions, local path genera-
tion, and mission and system management. Each of these
processing units is supplied with a hot spare backup to
take over control if the primary processor should detect
an error. Each of the processing units is really a pair of
tightly coupled processors so as to maximize the proba-
bility of fault detection and minimize latency. Although
there are really 4 active processors for each of these func-
tions, we treat the processor-pairs as a single processing
unit, since they are not used independently. When a mis-
match of results is detected, both members of the pro-
cessing pair are removed from the system. Figure 25 thus
shows that there are two processing units for these func-
tions, where one is the primary unit and the other is a
hot spare.

The scene and obstacle and VMS subsystems both re-
quire more functionality than one processing unit can pro-
vide, and thus each use 2 processing units. The scene and
obstacle processing units are also replicated, providing a
hot spare backup. The VMS system is triplicated, pro-
viding 2 hot spare backups.

In addition to the hot spare backups, 2 additional pools
of spares are provided, each containing 2 spare processing
units. The first pool can be used to cover the first 2
processor failures in the subsystems other than the VMS;
the second pool covers the first 2 failures in the VMS
subsystem.

The subsystems are connected via 2 triplicated bus sys-
tems, the first being a data bus and the second being the
mission management bus. The replicated memory system
18 connected to the data bus. The VMS has an additional
triplicated bus, the vehicle management bus.
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7.2 Failure criteria and parameters

The system fails if any of the functions cannot be per-
formed, or if both of the 2 memories fail, or if all 3 of any
one type of bus fail. The following MTBF (mean time be-
tween failures) values, giving rise to the following failure
rates, were used.

e processor pairs: 40,000 hours; failure rate: 2.5x 105

e buses: 400,000 hours; failure rate: 2.5 x 10~8

e memories: 1,000,000 hours; failure rate: 1.0 x 10~

7.3 Fault recovery

Fault detection is perfect (because of the processing pairs)
but it takes between 0.5 second and 5 seconds (uni-
formly distributed) for recovery to occur. If a second,
near-coincident failure occurs during this interval, we say
that the system fails because of near-coincident failures

(NCF).

7.4 Fault tree model

The fault tree model of the mission avionics system is
complicated by the presence of the pooled spares. For
ease of exposition, we first present a fault tree model that
ignores the pooled spares. We then describe the method-
ology for modeling pooled spares via a fault tree with
sequence dependency gates, by way of a simple example.
Finally, we define the full fault tree model of the mission
avionics subsystem including the pooled spares.

7.4.1 Fault tree with no pooled spares

The fault tree model of the mission avionics subsystem
with no pooled spares is shown in figure 26. This fault
tree shows that the system fails if any of the critical func-
tions fail, or if either of the bus systems fail, or if both
memories fail. There are 3 types of components in the
example system, processing units (type 1), buses (type 2}
and memories (type 3). The crew station, for example,
uses 2 components of type 1, so its basic event is labeled
2+ 1. The memory system uses 2 memories and is thus
labeled 2 * 3, while the mission management bus system
uses three buses and is labeled 3+ 2.

7.4.2 Modeling pooled spares

Before we add the pooled spares to the fault tree model
of the mission avionics system, consider a simple system
with two duplexes and 2 pooled spares. The fault tree
model of a 2 duplex system is shown in figure 27, while
the equivalent Markov chain is shown in figure 28. This
equivalent Markov chain is determined automatically by
HARP.

Next, consider the desired Markov chain representation
of the same 2-duplex system with the addition of 2 pooled
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Figure 25: Block diagram of mission avionics system architecture
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Figure 26: Fault tree model of mission avionics system with no pooled spares
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Figure 27: Fault tree model of a 2-duplex system

Figure 29: Markov chain model of a 2-duplex system with
2 pooled spares
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Figure 30: Fault tree model of a 2-duplex system with 2
pooled spares

spares (figure 29). The 2 pooled spares cause 2 states
to be added to the front of the Markov chain. These 2
states represent the first 2 failures in the system which will
deplete the spares. After the first 2 failures, 2 functioning
duplexes remain, and the rest of the Markov chain in
figure 29 is identical to that in figure 28.

We can use the fault tree shown in figure 30 to represent
the 2-duplex system with 2 pooled spares. In figure 30,
the combination of the 2/6 gate (which fires after the
first 2 of 6 failures) and the FDEP gate creates a Markov
chain that models the first 2 failures of 6 components.
After the first 2 failures, the FDEP gate stops any more
of the 6 components from failing. The two SEQ gates in
figure 30 do not allow the two basic events labeled with
1« 2 to begin to fail until after the 2/6 gate has fired.
After the 2/6 gate has fired, then the rest of the fault
tree (which is identical to the one in figure 27 can occur
as usual. This combination of FDEP and SEQ gates can
be used in a more general setting to tie multiple Markov
chains together.

7.4.3 Full model and results

Figure 31 is the full fault tree model of the mission avion-
ics system, including the pools of spares. The leftmost
FDEP and SEQ gates show the 2 spares for the vehicle
management system, while those to the right represent
the other 2 spares. ]

Because of the sequence dependency gates, this fault
tree cannot be solved by standard combinatorial meth-
ods, but rather must be converted to a Markov chain for
solution. HARP performs this conversion automatically,
and produces a truncated Markov chain with 479 states
and 2517 transitions. The Markov model is truncated af-
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Figure 31: Full fault tree model of mission avionics system

ter considering 5 component failures. Instead of produc-
ing an exact reliability estimate, bounds that encompass
the reliability of the full model are produced. For a 200
hour interval, the unreliability lies between 1.138 x 10~7
and 1.146 x 10-7.

8 Three fault tolerant hypercube
architectures

We next model three fault tolerant hypercube architec-
tures. All three contain B8 processing nodes connected
in a hypercube of dimension 3. All three consist of 2
fault-tolerant modules with each module containing 4 pro-
cessing nodes. The three architectures differ in the ways
that spare nodes are incorporated into the fault-tolerant
modules, in the way that messages are routed between
processing nodes, and in the architecture of the individ-
ual processing nodes. The architectures are described in
more detail in a paper that appears in the proceedings of
this symposium [5] and are discussed only briefly here.

8.1
8.1.1

System description
Architecture 1

Architecture 1 is based on the hierarchical approach to
sparing proposed by Rennels[17] and is depicted in figure
32. It consists of 2 fault tolerant modules of processing
nodes. Each module contains 4 processing nodes and one
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spare node. The spare is connected by a port to each of
the 4 active processors in the module.

The processing nodes themselves are comprised of 5
individual processors (4 active processors and a spare)
which communicate over an bus and share a memory
module. The memory module contains spare bit planes
and spare chips within a bit plane. The processing node is
connected to its neighboring nodes in the hypercube by 4
ports. Three ports communicate across the three dimen-
sions of the hypercube, and the fourth port communicates
with the spare processing node of the module.

8.1.2 Architecture 2

Architecture 2, also depicted in figure 32, is identical to
Architecture 1 except that the ports within each pro-
cessing node are replaced by hyperswitch ports(7]. The
hyperswitch allows an adaptive routing method to avoid
failed or congested links within the hypercube. It permits
any 2 nodes of the hypercube to communicate as long as
there exista any nonfailed path between them anywhere
throughout the hypercube.

8.1.3 Architecture 3

Architecture 3(6], depicted in figure 33, differs from archi-
tectures 1 and 2 in several important ways. Processing
nodes are again configured into 2 fault tolerant modules
(each containing 4 active processing nodes and one spare),
however the inter-node connections are mediated by de-
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Figure 32: Architecture 1 (Rennels)

coupling switches rather than being direct connections be-
tween ports of neighboring nodes. The hypercube connec-
tivity and the switching of spares online and failed nodes
offline is performed using these decoupling switches([6).
The switches are intended to be comparatively simple de-
vices. One consequence of using the switches to control
access to the spare nodes is that the spares cannot provide
redundancy for links as was possible for architectures 1
and 2.

The processing nodes of the hypercube are much sim-
pler and contain processors that are much less powerful
that those of architectures 1 and 2. Each processing node
consists of 2 processors which perform identical compu-
tations in parallel. The output is compared to detect
faults. A recovery module is responsible for fault han-
dling upon the detection of a processor fault. The node
may either declare itself failed or attempt a reconfigura-
tion to a simplex configuration upon detection of such a
processor fault. Both processors have access to a single
memory module and a DMA (direct memory access) mod-
ule. Finally, each processing node communicates with the
outside world through three portas, each of which connects
the node to its neighbor across one dimension of the hy-
percube.

For this discussion we examine only the processing
nodes of the various candidate architectures in isolation
from the ensemble. The processing nodes of each archi-
tecture themselves can be configured in a variety of ways.
The configuration chosen can affect the reliability and
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Figure 33: Architecture 3 (Chau and Liestman)

power consumption of the node, which can in turn affect
the overall ensemble reliability of the hypercube multi-
processor.

8.2 Failure criteria and parameters

The processor nodes for architectures 1 and 2 are identi-
cal, so their failure criteria are closely related. The differ-
ence between them is due to the message routing scheme
employed by each architecture. A processor node for ar-
chitectures 1 and 2 will fail if:

e the memory fails OR
e the bus fails OR

o 2 out of the 5 processors fail (the first processor fail-
ure is presumably recovered from by switching in the
spare to take the failed processor’s place) OR

o the node is disconnected from the other processing
nodes in the hypercube.

The events that cause a node to be disconnected differ for
the two architectures.

The routing algorithm used for architecture 1 allows
only one path between each pair of nodes in the hyper-
cube. Since the spare processing node in each of the two
fault tolerant modules can relay messages within the mod-
ule when a direct connection between 2 nodes in the mod-
ule is not possible, it takes the failure of 2 of the four ports
in a processing node to disconnect the node. In Architec-
ture 2, a hyperswitch is used instead of the single path
routing algorithm, so that all four ports in a node must
fail in order to disconnect the node.

A processing node for architecture 3 fails if:

¢ the memory fails OR
e the DMA unit fails OR

¢ both processors fail OR,
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¢ since the single path routing algorithm is used for

this architecture, the node will fail if any of its 3
ports fail.

The component failure rates for all three architectures
are listed below.

o Active processor (architectures 1 and 2): 1.990x 10~
per hour

e Active processor (architecture 3): 2.308 x 107 per
hour

¢ Warm spare processor(architecture 2): 1.0x 10~ per
hour

¢ Shared Memory (architectures 1 and 2): 3.477x10-7
per hour

o Memory (architecture 3): 1.147 x 107 per hour
¢ DMA module (architecture 3): 3.477 x 10~7 per hour

e Intra-node bus(architectures 1 and 2): 1.147 x 10~7
per hour

e Hyperswitch and I/O port (all architectures):
3.477 x 10~7 per hour

8.3 Fault recovery

The FEHM used for the processors assumes that a pro-
cessor failure can be detected, located, and the spare suc-
cessfully switched in to replace the failed processor 95%
of the time, and that the time required to do all of this
is uniformly distributed between 0.9 seconds and 1.1 sec-
onds. The remaining 5% of the time the reconfiguration
attempt does not succeed, leading to node failure. The
FEHM used for the ports assumes detection and deacti-
vation of a failed port is successful 98% percent of the
time, and that the time required for this is exponentially
distributed with a mean of 0.1 sec. Again, the remaining
2% of the time a port failure is not successfully detected,
leading to node failure. No transient restoration is at-
tempted, i.e., all failures are considered to be permanent.

8.4 Fault tree models

8.4.1 Hot spares

Figures 34 and 35 model the processing nodes in archi-
tectures 1 and 2 when the spare processor in the node is
a hot spare (the spare is powered on and operating all the
time) and hence fails at the same rate as the active pro-
cessors. The fault trees differ only in the modeling of port
failures, as architecture 1 fails when 2 of the four ports
fail (hence the 2/4 gate), while architecture 2 doesn’t fail
until all four ports have failed (hence the AND gate). Fig-
ure 36 depicts a fault tree model for the processing nodes
of architecture 3.
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Figure 34: Fault tree model of architecture 1 processing
node with hot spares
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Figure 35: Fault tree model of Architecture 2 processing
node with hot spares

Node fails

Figure 36: Fault tree model of Architecture 3 processing
node with hot spares
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8.4.2 Cold spares

Power consumption by a multiprocessor with spare nodes
can be reduced by having the spares be cold spares, un-
powered until they are needed to replace a failed active
processor. A cold spare processor cannot fail until it is
activated and brought online. In HARP this type of con-
figuration is modeled using the Cold Spare gate, as de-
picted in figure 37 by a fault tree for architecture 2. The
cold spare gate ensures that the spare processor does not
fail until one of the 4 active processors fail. The 2/5 gate
in parallel with the cold spare gate maintains the require-
ment that 2 processor failures cause the node to fail. Such
a configuration not only reduces power consumption, but
also enhances the reliability of the processing node.

8.4.3 Warm spares

Inatead of being unpowered, the spare may be partially
powered up. It may then fail before being activated but at
a lesser rate than the active processors. Such a processor
is called a warm spare and can be modeled in HARP us-
ing the Sequence Enforcing gate as shown in figure 38 for
architecture 2. In this example two pseudo-components
{appearing as inputs to the OR gate whose output feeds
into the Functional Dependency gate) are used to rep-
resent the 4 active processors and spare before any pro-
cessor failures. Upon the first failure of a processor (ei-
ther active or spare), these two pseudo-components are
“turned ofl” as far as the fault tree is concerned by the
Functional Dependency gate. The 4 remaining proces-
sors, now all active, are represented by the “4*processor”
basic event which appears as the rightmost input to the
Sequence Dependency gate. This basic event had been
“turned of” prior to the first processor failure by the
Sequence Enforcing gate. After the first processor fail-
ure, the leftmost input to the Sequence Enforcing gate is
turned on, which “turns on” the basic event that is its
rightmost input (i.e. the processors of this basic event
are now permitted to fail). Note that because this ba-
sic event is also an input to the top OR gate of the fault
tree, a subsequent lLailure of any of the 4 processors will
cause the node to fail, again maintaining the requirement
that failure of 2 of the 5 processors cause node failure. Al-
though a spare does not fail while unpowered, upon power
up and activation there can be some probability that the
spare does not operate properly. Such a situation can be
modeled as a warm spare.

8.5 Results

Figure 39 compares the 10 year unreliabilities of the pro-
cessing nodes of each of the three architectures assuming
all of them use hot spares. The unreliability of the ar-
chitecture 3 processing nodes is much lower that those
for architectures 1 and 2, reflecting that the reliability of
individual processors for architecture 3 is much greater
than that of the others and there are only 2 that can fail

© 1991 Annual RELIABILITY AND MAINTAINABILITY Symposium

120

Node fails

—

25

csp
—
proc

(4*proc)

Figure 37: Fault tree model of architecture 2 processing
node with cold spares
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Figure 38: Fault tree model of architecture 2 processing
node with warm spares
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Figure 39: Comparison of node unreliabilities of all three
architectures using hot spares
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Figure 40: Unreliability of architecture 2 processing nodes
with various types of spares

instead of 5. As anticipated, the unreliability for archi-
tecture 2 nodes is slightly better than the unreliability for
architecture 1 nodes.

Figure 40 shows the 10 year unreliabilities for Architec-
ture 2 processing nodes using hot, warm, and cold spares.
In general, the reliability increases from configuration to
configuration in that order. This is to be expected, since
the failure rate of the spare during its inactive period de-
creases in that order.
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GLOSSARY

Most terms unique to reliability modeling and fault-tolerant systems are defined within the
body of each volume of this Technical Paper. The meaning of some terms are well known to
researchers and users of these technologies but may not be familiar to new users of Hvbrid
Automated Reliability Predictor (HARP) integrated reliability tool (HiRel) system. Thus, the
purpose of this glossary is to primarily aid new users.

Availability

Availability is a probabilistic quantity that predicts the operational life of a system that is
subject to line maintenance (repair). Availability is the probability that a system under repair
1s operational at a specified time. In a Markov chain model representation. repair is modeled
by adding transitions from states with n + 1 failed components to states with »n components.
The transition rate is given as a repair rate. No fault tree model representation has vet been
developed to represent an availability model; therefore, a Markov chain model must be given
to HARP for solution. A fault tree model can be used to specify and generate a preliminary
Markov chain model that the user needs to modify.

Behavioral Decomposition

Behavioral decomposition is a mathematical approximation technique that reduces a complex
fault /error handling model (FEHM) to a branch point in a Markov chain. The effects of the
FEHM are compensated for by modifying state transition rates. The advantage of this technique
is that it greatly reduces the size of Markov models for solution and complex FEHM behavior
that can be non-Markovian can be modeled.

Bounds or Mathematical Bounds

Large or complex mathematical models often require approximations to keep their solutions
tractable. Bounds are the numerical expressions of the variation in a computed result due to
mathematical approximation or uncertainty in the accuracy of the input data to the models.

Combinatorial Model

A combinatorial model is a stochastic model that relates combinatorial component failure or
success events to a subsystem or system failure or success, respectively. Combinatorial models
do not distinguish the order of failure events.

Coincident Fault

A coincident fault exists at the same time one or more other faults are present. A coincident
fault is not a simultaneous fault.

Conservative Unreliability Result

Mathematical quantities can be expressed in two forms, in exact form, which is usually a
symbolic representation such as the number 7, or in an approximate form such as a decimal
representation for 7 as 3.14159. When approximations are necessary, the difference between the
exact quantity (which may not be obtainable) and the computed result (which is obtainable) is
called the error. A conservative unreliability result is one where the error in the computed result
is in the direction of increased unreliability.
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Critical-Pair Fault

A critical fault is a near-coincident fault involving two faults. HARP uses three multifault
models to account for critical-pair faults: ALL, SAME, and USER.

Extended Behavioral Decomposition

Extended behavioral decomposition is a generalized behavioral decomposition technique that
allows multiple FEHM entry/exit transitions and multifault near-coincident modeling.

Fault Tree

A fault tree is a notational model that uses symbols resembling logic gates that relates failure
events of components or subsystems to failure events of a system composed of components and
subsystems.

Instantaneous Jump Model

An instantaneous jump model is a Markov model that is an approximation of a more complex
semi-Markov model that produces a conservative result with respect to the semi-Markov model
that is operated on mathematically to become the instantaneous jump model.

Multifault Model

A multifault model is a‘fault/error handling model that accounts for two or more faults, none
occurring simultaneously.

Near-Coincident Fault

A near-coincident fault is second fault that occurs during the time between the occurrence
of a first fault and its recovery.

Near-Coincident Failure

A near-coincident failure is system failure resulting from a near-coincident fault. To reduce
modeling complexity, a near-coincident failure is assumed to result from a near-coincident fault.
Typically, this assumption resuits in a conservative result.

Optimistic Unreliability Result

An optimistic unreliability result occurs when the error in the computed result is in the
direction of decreased unreliability.

Primitive

A primitive is any screen image that is an entity that can be manipulated without dissection,
for example, a line, a circle, a fault tree gate, etc.

Semi-Markov Models

Semi-Markov models are generalizations of Markov models. In particular, semi-Markov
models allow generalized state holding time distributions. Semi-Markov models are required
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for fault-tolerant system models to account for fault/error handling times that may not be
exponential.

Sequence-Dependent Model

A sequence-dependent model is a stochastic model that relates ordered component failure
or success events to a subsystem or system failure or success, respectively. Sequence-dependent
models distinguish the order of failure events. These models are more complex than combinato-
rial models and are also more difficult to solve.

Simultaneous Fault

A simultancous fault is a second fault that occurs at exactly the same instant in time as a
first fault. Markov chain models do not allow such faults.

Weibull Distribution

A Weibull distribution is a two parameter distribution that can exhibit time increasing,
decreasing, or constant failure rates.
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